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Abstract—Model based design of embedded controllers is
prevalent across different industries. The final step in model
based design is synthesis of hardware (or software) controller
and then testing the synthesized controller in closed-loop with
the plant model — this is termed as co-simulation. Standard co-
simulation approaches use asynchronous communication fabric.
However, they are known to suffer from race conditions, jit-
ter, etc, making real-time property validation difficult. Current
approaches to co-simulation problems either require complex
middle-ware or require synthesis of the controller and plant for
synchronous execution. However, these approaches are unsuited
for hybrid system control design and validation, as they require
the plant model to execute at an arbitrarily small simulation step,
while the synthesized controller executes at its own rate if any.
The small simulation step slows down the simulation and such a
setup does not guarantee level crossing detection. In this paper,
we propose a novel Metric Interval Temporal Logic (MITL)
based validation and Hardware in Loop (HIL) co-simulation
framework, which synchronizes and integrates the controller
synthesized in hardware and the plant executing in software.
A discrete controller handles a level crossing generated by the
plant, which evolves on variable step size. The traces generated
from the closed-loop operation of the overall system are used to
validate MITL properties. Finally, the controller hardware and
the plant model are adjoined via a communication architecture,
whose sample time is dependent upon the robustness estimates of
the MITL properties, which is necessary to guarantee validation
correctness.

Index Terms—Co-simulation, MITL, Robustness, validation,
Hybrid Automata (HA)

I. INTRODUCTION

Model based design of embedded controllers for hybrid
systems integrates design, validation and implementation into
a single seamless flow [1]. Co-simulation is one of the
final steps in the model based design approach; where the
synthesized controller is adjoined with the plant model for
testing and validation. The standard approach to co-simulation,
in the model based design flow, is shown in Figure 1a. The
synthesized controller and the plant model are adjoined via
an asynchronous communication fabric, e.g., the networking
stack. However, asynchronous communication may introduce
timing jitter and all types of race conditions [2]. A number of
solutions have been proposed [3]–[5]. These are either based
on the Functional Mockup Unit (FMU)-Functional Mockup
Interface (FMI) standard or use Simulink®. But these solutions

don’t provide a proper platform for hardware-software co-
simulation based MITL validation. Design and validation
challenges arise when plant and controller are integrated and
co-simulated are: 1⃝ common lock-step selection on which
hardware and software components synchronize, 2⃝ level
crossing detection to correctly control the physical process,
3⃝faster controller execution than the plant so as that it
responds to every plant state, which means that the reaction of
controller on its inputs from plant should take no observable
time — this is termed as the synchrony hypothesis [6] and
finally, 4⃝ timing validation of the controller functionality.
The current approaches do not address the real-time concerns
of controller design and don’t guarantee synchrony hypothesis
either. In order to address these concerns, a recent approach to
co-simulation is described in [7] and presented in Figure 1b. In
this co-simulation technique, the plant and controller models,
both, are synthesized in hardware, and are synchronized on
a common clock. The real-time MITL properties are vali-
dated on line, with the plant and the controller executing
synchronously at the same clock frequency. The synchronous
execution of the plant and the controller overcome most of the
concerns, except one, i.e., correctly capturing all level/zero-
crossings. The synchronous execution of the plant model in
hardware (c.f. Figure 1b) may lead to missed level-crossings.
In case of stiff systems [8], for instance, an arbitrarily small
simulation step might be needed to correctly capture all level-
crossings, when simulating hybrid plant models [9]. This is
achievable in modeling software such as Simulink®with a
variable step size solver, but is difficult to achieve, efficiently,
when the plant is synthesized in hardware as proposed in [7]
(c.f. Figure 1b). Consequently, the existing methodologies do
not guarantee correct real-time controller functionality.

In this paper we remedy these issues with the follow-
ing key contributions: 1⃝ we provide a novel Hardware in
Loop (HIL) co-simulation framework based on HA [10]. The
HA plant model is described in Simulink/Stateflow®. The
discrete controller is synthesized in hardware and simulated
using Modelsim®. 2⃝ We propose an efficient communica-
tion architecture adjoining the Simulink/Stateflow® plant and
the controller hardware. 3⃝ The framework is designed to
satisfy the synchrony hypothesis, thereby guaranteeing (near)
instantaneous response to plant inputs. 4⃝ Robustness criteria978-1-5386-6195-6/18/$31.00 ©2018 IEEE
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dation of controllers.
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(c) Proposed Methodology for validation
of Safety Critical Controllers.

Fig. (1) Figure 1a and Figure 1b shows the current technique for validation of controllers. Figure 1c shows the proposed
technique for validation of controllers.

[11] based sample time selection, which is used for data
transfer across discrete and continuous domains. 5⃝ Validation
of MITL properties on the output traces on a range of real-
world hybrid system benchmarks which are implemented in
the proposed co-simulation framework.

The overall proposed co-simulation methodology is shown
in Figure 1c and is described in brief as follows:

• Step-1: At the very first step, the plant and controller
HA [3] are modeled in Simulink®.

• Step-2: The controller is synthesized in hardware,
while the plant is modeled in software and we choose
Simulink/Stateflow®for that. The output data from the
Simulink® model is sampled by Analog to Digital
converter (ADC) before sending it to the synthesized
digital controller. The most important information such
as controller response to level crossings, are exchanged
between the plant and the controller at a chosen sam-
ple rate based on robustness criteria [11], [12]. The
plant uses a variable step Ordinary Differential Equation
(ODE) solver to evolve its continuous variables. The
controller acts on the plant outputs and controls its
behavior based on certain events like level crossings.

• Step-3 : This step constitutes MITL property valida-
tion. The MITL properties validate real time controller
functionality while it executes adjoined with the plant
model. The properties are specified in MATLAB using
the sTaLiRo [13] validation tool-box. If the property
gives a negative robustness value,it is falsified, then
either the sample time is decreased or the controller logic
is fixed to achieve correct functionality.

The rest of the paper is arranged as follows: We begin with
description of the running example and problem statement in
Section II. Then we describe syntax and semantics of HA in
Section III, which is followed by controller hardware synthesis
technique and co-simulation framework in Section IV.This
is followed by benchmarks in Section V where we applied
our methodology. We present related work in Section VI and
conclusion in Section VII.

π/2
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(a) Steering
Wheel

(b) Stateflow Impementation of Steering
wheel controller.

(c) Steering Wheel Plant (d) Steering Wheel Con-
troller

Fig. (2) Steering Wheel of a car and its implementation in
Stateflow®

II. RUNNING EXAMPLE AND THE PROBLEM DESCRIPTION

A. Running example

We take steering wheel controller from [14] as our running
example. The steering wheel (Figure 2a) of an autonomous
vehicle needs to be maintained within the upper half plane
shown with red markers. The controller of the steering wheel
is an example of sliding mode control without chattering. In
Figure 2a, x represents the angular position of the steering
wheel. The angle of the steering wheel is initially at π

2 radians,
which is shown as an up arrow in Figure 2a. Following
standard convention, clockwise movement of the steering
wheel is considered negative and anticlockwise as positive.

The plant model and the adjoined controller are shown
in Figure 2b. The Simulink/Stateflow® implementation of
the steering wheel plant is shown in Figure 2c, which is
controlled by a discrete controller shown in Figure 2d. The
plant model has two modes: State1 and State2. It has three
inputs and two outputs. The plant inputs are: dr, which is the
controlled angular velocity, the other one is a constant value



representing pi while the third one being the turn value
which is used to move steering wheel in a specific direction.
The rate of change of the angle in both the locations is
represented as ẋ is dr. As the steering wheel rotation reaches
the left limit which is indicated by the level-crossing condition:
cos(x) ≤ -0.99, the output signal turn is set to 1, the
controller is triggered to produce a clockwise angular velocity
of -4 rad/sec. Likewise, the right turn limit is detected when
the level crossing condition cos(x) ≥ 0.99 is reached,
in which case the angular velocity selected is 0.1 rad/sec.
The two outputs of the plant are xout and cosx, which
are the angular position of steering wheel and the horizontal
projection of rotation, respectively. These outputs are used
for visualization and debugging purpose. The controller is a
collection of few control statements, typically being if-else
structures. As shown in the Figure 2d, the controller outputs
the turn and dr_out control signals. The output values are
based on level crossing conditions which are provided to it
as inputs from the plant. It should be noted here that there
are no ODEs evolving in the controller. Based on the angular
velocity passed by the controller, angular position (xout) of
the steering is computed. If all the level crossings are detected,
we’ll get a plot as presented in Figure 5c.

(a) Trace cos(x). (b) Trace of angular velocity
(dr_out).

Fig. (3) Traces of Simulink setup at a variable step-size with
delay of 1 second between plant model and the synthesized
controller; missing level crossings are highlighted.

(a) Trace cos(x). (b) Trace of angular velocity
(dr_out).

Fig. (4) Traces generated at a clock period of 0.07 seconds
when plant and controller are both synthesized in hardware
with synchronous communication, but missing level crossings.

B. Problem Description
The standard technique of adjoining the synthesized con-

troller with the plant model for co-simulation is presented in
Figure 1a. The major issue with this approach is the unpre-
dictable timing delays between the plant and the controller due
to the asynchronous communication mechanism. The timing
problems are highlighted by the traces generated from the co-
simulation approach implemented in Simulink/Stateflow® for

the steering-wheel running example in Figure 3. The values
for cos(x) is shown in Figure 3a. The level crossings for
this trace are cos(x) ≤ -0.99 or cos(x) ≥ 0.99. The
trajectory of the trace changes abruptly and misses to detect
these level crossings multiple times during co-simulation. The
output trace for dr_out generated by the controller, is shown
in Figure 3b; and is incorrect.

Recently proposed methodology in [7] and presented in
Figure 1b overcomes the problem of communication delays
between the plant model and the controller by synthesizing
both the plant and controller in hardware. The synthesized
closed-loop system is then executed synchronously at a fixed
clock. The traces, for the running steering-wheel example,
generated when the plant and controller are synthesized in
hardware are shown in Figure 4. As shown in Figure 4a there
are still missing level crossings, as the cos(x) trace abruptly
changes its trajectory, at few points, and hence change in the
value of angular velocity occurs at improper times (Figure 4b).
Although delays are handled but level crossing issues impact
correct trace generation. The incorrect level crossing detection
can be overcome by using the technique described in Figure
1b and reducing the clock period significantly. However, this
makes the system inefficient in both execution efficiency and
energy consumption. Moreover, in the general case, the step-
size might need to be arbitrarily small [15] (e.g., stiff systems),
which is impossible to implement in hardware. To remedy this
problem, it is required to execute plant on a variable step-size
in software and have all the level crossings generated correctly.
Figure 5a shows the correct output trace, for the running
steering-wheel example, generated using the proposed method-
ology in Figure 1c. As we can see, none of the level crossings
are missed. Co-simulation based validation is carried out on
generated traces using Signal Temporal Logic (STL)/MITL
properties [16]. For the running example, the level crossing
conditions are: cos(x) ≤ -0.99 or cos(x) ≥ 0.99.
The MITL property outlined in Equation 1 depends on the
level crossings as it states that whenever within 0 to 20
seconds, value of cos(x) is greater than or equal to 0.99 the
angular velocity should change to 0.1 rad/sec within 1 second.
If the level crossings are missed, the property in Equation 1
will be validated on an incorrect trace.

ϕ : □[0,20]((cos(x) ≥ 0.99) =⇒ ♢[0,1](dr == 0.1)) (1)

III. DESIGN SPECIFICATIONS BASED ON HA

HA is a vehicle to represent dynamical hybrid systems
[17]. The overall system process external variables and is
divided into a number of operational modes or locations
that describe piece-wise continuous processes. Each location
captures certain operational dynamics, which are specified by
a set of ODEs that indicate the rate of change of continuous
variables. In a given location, the continuous variables evolve
with time as long as the location invariant holds.

HA can make transitions based on the outgoing edge guard
conditions. Once a given outgoing edge guard is satisfied,
a transition can be performed. Furthermore, reset relations



(a) All level crossings detected. (b) Expected angular velocity trace.
(c) Angular position of the Steering on
detection of all level crossings.

Fig. (5) Level crossing issues fixed with the variable step size and controller Worst case Response Time (WCRT) of 1.29ns
as sample time. Figure 5a shows all level crossings detected, Figure 5b shows the correct angular velocity trace, while Figure
5c correct angular position of steering on detection of all level crossings.

update the variables on the outgoing edge guards. The formal
definition of HA is provided in Definition 1 following [18].

Definition 1: A Hybrid Automata (HA), H =
⟨Q,X,W, Init, f, Inv,E,G,R⟩, where:

• Q = {q0, q1, . . . , qn} is the set of locations, with q0
being the singleton initial location. Q = ∥Q∥.

• X is a finite collection of internal variables, with its
domain represented as X = R∥X∥.

• W is the finite set of external variables having domain
W, such that W =WI ∪WO where WI represent input
variables while WO represents output variables.

• Init ⊆ Q×X×W is a set of initial states such that there
is exactly one q0 ∈ Q, is the singleton initial location.

• f : Q × X × W → R is a vector field for specifying
ODEs.

• Inv : Q → 2X×W assigns to each q ∈ Q an invariant
set.

• E ⊆ Q×Q is a collection of discrete edges.
• G : E → 2X×W assigns to each e = (q, q′) ∈ E a guard.
• R : E ×X×W → 2X×W assigns to each e = (q, q′) ∈
E, x ∈ X and w ∈ W is a reset relation.

A. HA of the Steering wheel plant model

The steering wheel plant model HA is based on [14]
and presented as a Simulink/Stateflow® implementation in
Figure 2. It has two locations in which ODEs evolve. Mapping
the steering wheel HA, Hp to Definition 1 we have:

• Qp = {State1, State2}
• Xp= {x}
• Wp = {pi, dr, turn, cosx, xout}
• Initp = (State1, π/2,cos(π/2), 0)
• Ep = {(State1, State2), (State2, State1)}
• Gp: Gp(State1, State2)={turn==1},Gp(State2, State1) =

{turn == 0}
• The reset relation for the edges are defined as:
Rp(State1, State2) = [ϕ],
Rp(State2, State1) = [ϕ]

The invariants of all locations are True. The vector field f in
the Equation 2 defines a basic ODE.

f(q, x)
def
=

[
ẋ
]
=

[
dr
]
,∀q ∈ Q (2)

B. HA of Steering wheel controller

The steering wheel controller is a single location HA and it
has no ODEs. Mapping the controller HA to Definition 1 we
have Hdc:

• Qdc = {C1}
• Xdc = Edc = Gdc = Rdc = ϕ
• Wdc = {cosx, dr_out, turn}
• Invdc : Invdc(C1) = {(cosx ≤ 0.99), (cosx ≥ −0.99)}

The HA of the controller is realized in Sinulink® as a Stateflow
chart described in Figure 2d.

C. Composition of a network of HAs

A network of HAs execute synchronously, exchanging data
at every step. Furthermore two HAs H1 and H2 can be
composed, iff, they have disjoint set of continuous variables
and X1 ∩ V2 = X2 ∩ V1 = ϕ, where X1 ∈ H1, X2 ∈ H2,
V1 = X1 ∪W1 and V2 = X2 ∪W2. The formal definition of
composition of two HAs is given in Definition 2

Definition 2:
Let H1=⟨Q1, X1,W1, Init1, Inv1, E1, G1, R1⟩ and H2

=⟨Q2, X2,W2, Init2, Inv2, E2, G2, R2⟩ be the two HAs such
that X1 ∩ X2 = ϕ. A synchronous parallel composition
of H1 and H2 written as H = H1 ∥ H2, where H =
⟨Q,X,W, Init, f, Inv,E,G,R⟩ such that:

• Q = Q1 ×Q2

• X = X1 ∪X2 is a set of internal variables.

• W =


W1O ∪W2O, if W2O =W1I and W1O =W2I ,
Where, W 1O ∈W1,W 2O ∈W2,are output

variables, W 1I ∈W1,W 2I ∈W2

are input variables.
W1 ∪W2, if W2O ̸=W1I and W1O ̸=W2I .

• Init = Init(q01) ∧ Init(q02) where (q01, q02) ∈ Q

• Inv = Inv(q1) ∧ Inv(q2), where(q1, q2) ∈ Q.
• E: For any composite HA it is defined as follows:

– If {(q1, q2), (q
′

1, q2)} ∈ E,then {(q1, q
′

1)} ∈ E1 with
q1, q1

′ ∈ Q1.
– If {(q1, q2), (q1, q

′

2)} ∈ E, then {(q2, q
′

2)} ∈ E2,
with q1, q1′ ∈ Q1 and q2, q2′ ∈ Q2.

– If {(q1, q2), (q
′

1, q
′

2)} ∈ E, then {(q2, q
′

2)} ∈ E2 with
q2, q2

′ ∈ Q2.
• G : For any transition in the composite HA guards are

defined as:



– G{(q1, q2), (q
′

1, q2)} = G(q1, q
′

1),with q1, q1′ ∈ Q1.
– G{(q1, q2), (q1, q

′

2)} = G(q2, q
′

2),with(q2, q
′

2) ∈ Q2.
– G{(q1, q2), (q

′

1, q
′

2)} = G(q1, q
′

1)∧G(q2, q
′

2),with
q1, q1

′ ∈ Q1 and q2, q2′ ∈ Q2.
• R : E × X × W → 2X×W, assigns to each
e = (q, q′) ∈ E, x ∈ X, w ∈ W is a reset relation.

Remark 1:
When we have a common interface between the composing

HAs such that output variable of one HA is input to the other
and vice-versa, in that case, all external variables become inter-
nal shared variables, such that, X = X1 ∪X2 ∪W1O ∪W2O,
and W = ϕ. Such a composed HA is called Well Formed
HA. On the contrary when there is no common interface, then
the external variables of composed HA is simply the union
of external variables of composing HA excluding any shared
variables.

D. Composition of HAs of steering wheel and controller

We apply Definition 2 to compose the HAs of our running
example. The HAs of steering wheel plant and controller are
already presented in Section III-A and III-B. The composition
of these HA is defined as follows:

• Q = Qp ×Qdc,
• X = [{x}]
• W = [pi, xout, dr_out, turn, cosx]
• Init = [{state1, C1}],
• Inv : Inv(state1, C1) = {(cosx ≤ 0.99), (cosx ≥

−0.99)}. Inv(state2, C1) = {(cosx ≤ 0.99), (cosx ≥
−0.99)}.

• E = [{(State1, C1), (State2, C1)},
{(State2, C1),(State1, C1)}]

• G : G[{(State1, C1), (State2, C1)}] = (turn == 1),
G[{(State2, C1), (State1, C1)}] = (turn == 0)

• The reset relation for the edges is as follows:
R{(State1, C1), (State2, C1)}=[dr_out = 0.1; turn =
0; ], R{(State2, C1), (State1, C1)}=[dr_out=−4; turn =
1; ]

Theorem 1: Let H1=⟨Q1, X1,W1, Init1, Inv1, E1, G1, R1⟩
and H2 =⟨Q2, X2,W2, Init2, Inv2, E2, G2, R2⟩ be the two
HAs such that the composition H1 ∥ H2, is fully closed
system represented by a well formed HA, H ,where H =
⟨Q,X,W, Init, f, Inv,E,G,R⟩. Then, the fully closed sys-
tem represented by this HA is deterministic for all reachable
states such that (q, x) ∈ H , if it satisfies the following:

1 It contain a unique Guard for every edge connecting
two states in a reachable set.

2 If (q, q
′
) ∈ E, and (q, q”) ∈ E,with, q

′ ̸= q”,then,
x /∈ G(q, q

′
) ∩G(q, q”).

3 If (q, q
′
) ∈ E, and, x ∈ (q, q

′
), then R contains at most

one element.
Proof 1: We refer to [17], [18] for it’s proof.

We obtain a fully closed system while we compose HAs of our
running example. The outputs of controller are hidden under
composition and are shared between plant and the controller.

IV. CO-SIMULATION FRAMEWORK

A. Modeling the plant HAs in Simulink/Stateflow®

We synthesize steering wheel plant model in Simulink®

and Stateflow® from its respective HA. The HA of steer-
ing wheel plant is described in Section III-A while its
Simulink/Stateflow®model is shown in Figure 2. The oper-
ational details of the plant are already described in Section
II.

B. Hardware synthesis of the controller

Controllers integrated with their respective plant models
need to be fast and efficient in execution. To achieve this,
each controller HA is mapped into a behavior preserving
discrete control logic which commonly use control flow state-
ments. These control structures generate the control decision
whenever any of the level crossing conditions are detected
during evolution of the plant. The benefit of having discrete
controllers is that 1⃝ the responses generated by them are
faster within their WCRT which is based on the controller
critical path when synthesized in hardware. The WCRT of each
controller for all our benchmarks tested is specified in Table I.
In order to guarantee synchrony hypothesis, the plant
execution is bound by the minimum step whose value is greater
then the WCRT of the respective controller. 2⃝ these discrete
controllers generate outputs based on present input values. It
should be noted that data exchange with continuous domain
happens at a specifically chosen sample time and is described
in Section IV-D.

The inputs to controller describe the sensitivity list of the
control statement, and, based on its value a control decision
is made by the controller. These control structures get synthe-
sized as multiplexers. All the logic in controller uses 32 bit
fixed point numbers.

C. Design and implementation of the Hardware-Software Co-
Simulation Framework

The co-simulation framework consists of a plant model
implemented in Simulink® and a controller model which is
synthesized in hardware as a discrete logic unit. The outputs
of a discrete controller only relies on inputs present at a given
time instant. Furthermore, the plant operates in a continuous
domain, so any outputs of the plant need to be sampled before
they are passed to the controller. We use Analog to Digital
converter (ADC) which samples continuous data on a sample
time and then pass it to the controller, while the reverse path is
handled by Digital to analog converter (DAC). Apart from this
there is a Schmitt trigger to handle signal loss or delays and
is described in Section IV-C1. The setup is shown in Figure
6.

1) Handling Asynchronous communication: When both
plant and controller run at their own pace without any co-
ordination, this gives rise to many issues like race condi-
tions etc., eventually, communication between the plant and
controller goes asynchronous. Race conditions [2], [19] add
to such random delays. A race condition is triggered when
an output depends on timing of several events. For example,
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whenever one variable is updated by different drivers at the
same time gives rise to a race condition which leads to
intermediate signal values. To handle these situations, we
propose the use of Schmitt trigger [20]. A Schmitt trigger
is a comparator with hysteresis and can be plugged at the
plant boundary. For a given signal to be transferred, two
voltage levels are defined: upper threshold voltage and a lower
threshold voltage. Whenever a signal value remains below
the lower threshold voltage then a logic zero is generated
at the output, on the contrary, whenever the signal value
remain above the high threshold voltage then a high voltage
value is generated. The threshold voltage value (high and low)
can be any arbitrarily value as required. This logic helps in
eliminating race conditions and provides a clear discrete output
over the wire. In-order to eliminate transport delays over the
wire, repeaters can be used on specific points in the wired
connection between plant and controller. As shown in Fig.
6, a Schmitt trigger is integrated at the interface of discrete
domain. This helps correct the signal value coming out from
the analog domain before it is passed to the other domain and
a repeater is installed on the wire connecting two domains to
help prevent signal loss.

D. Sample time selection for hardware software co-simulation

The use of ADC helps sample and transmit data from
continuous to discrete domain. As shown in Figure 6, plant HA
modeled in Simulink®generates the data which is processed
by a level crossing detection block. Upon detection of level
crossings the data generated is sent into the ADC single entry
buffer which acts as a continuous amplitude and discrete time
sampler. On the selected sample time this data is read from the
buffer and then transmitted to the controller. To transmit data
across domains, a common sample time is chosen. The plant
behavior and the controller response to the level crossings is
sampled at this sample time. This means that the sample time
value must be chosen adequately.

The criteria for sample time selection is based on 1⃝ level
crossing generation and detection, and the 2⃝ justification
of MITL properties with positive robustness values. We use
WCRT of the respective benchmark controllers as the desig-
nated sample time. The WCRT values give positive robustness
as specified in Table I. Robustness is described in Section
IV-E.

E. Robustness estimate of MITL properties

Hybrid systems are continuous time systems, the validation
of such systems is done on discrete traces. Consequently,
we must guarantee that any MITL property that holds on

discrete trace also holds on continuous trace. In this context,
whatever sample time we select, must be chosen such that the
MITL property under consideration must be satisfied on both
discrete and continuous traces. In this section we describe the
robustness estimate [12] technique used to select such a sample
time/step size for the co-simulation framework. Robustness
[11], [12] is defined as positive radius of neighborhood that
can be fitted around a signal without changing its truth value
and the maximum value of this radius is called the robustness
degree. Any function that maps an MITL property ψ and a
discrete output trace x[t] as a real valued number defines
the robustness estimate. A very large positive real number
means that any property ψ which holds on the discrete trace
x[t] also holds easily on the continuous trace x(t), while
a small positive value means that the property ψ is close
to being violated on the continuous trace. A non-positive
number indicates that the property ψ is violated on continuous
trace. We use the robustness estimation technique from [11],
[12]. According to this technique, the robustness estimate
depends on three basic conditions: 1⃝All ODEs in HA are
Lipshictz continuous, 2⃝ the sample time selected should be
less than one-third of the difference of supermum (maximum)
and infimum(minimum) of the non-singleton timing intervals
specified for any given MITL property ψ. This constraint
bounds the maximum sample time for any given property,and
3⃝the trace length of the co-simulation should be greater than

the longest timing interval of any MITL property.

In our co-simulation framework we write MITL properties
using S-TaLiRo [13] in Matlab® which are then justified in the
co-simulation environment. If any property is falsified, then
reason for this can be some design issue or because of wrong
sample time selection. After fixing any design issues, if the
property is still falsified, then we fix the sample time. We select
the optimal sample time which gives the maximum robustness.
On top of this if different properties give optimal robustness on
different sample times then the smallest of those sample times
will give all the properties justified with optimal robustness.
This also applies to the methodology in Figure 1b, but it does
not guarantee detection of all level crossings even with optimal
robustness.

The co-simulation framework for our running example
is shown in Figure 7. The plant model is implemented in
Simulink® while the controller model is implemented in
System Verilog and is simulated by ModelSim®. The data
generated by Simulink® is received by modelsim® after con-
verting it into a compatible data type. For example, the turn
signal although being a double type in simulink® only outputs
either a one or a zero value is accordingly converted into
System Verilog (SV) Boolean data type. On the other hand
the SV outputs dr_out value in 32 bit signed fixed notation
is converted into double data type. The block labeled ADC
handles all the analog to digital conversion at a sample time
selected based on the criteria specified above.



TABLE (I) MITL Properties for different benchmarks
S.No. Informal description of MITL Property MITL Specification Robustness Sample time (ns) ODE Type

Steering Wheel Controller properties Linear ODEs.
1 Whenever cosx ≥ 0.99 then dr == 0.1 rad/sec ψ = □[0,20] ( (¬ p1) ∨ ♢(0,1] (p2)). Here, p1: cosx

≥ 0.99 and p2: dr = 0.1
1.9808 1.29

2 Whenever cosx ≤ -0.99 then dr == -4 rad/sec ψ = □[0,20] ( (¬ p1) ∨ ♢(0,1] (p2)). Here, p1: cosx
≤ -0.99 and p2: dr == -4

4.1 1.29

Switch Tank Controller Linear homogeneous ODEs.
1 Whenever CT0 is zero within 4 timeunits then

CT1 is selected within 3 time units
□[0,3] ( (¬ p1) ∨ ♢(0,2] (p2)). Here, p1: CT0 ==0
and p2: CT1 == 1

1.65 1.285

2 Whenever x2 ≤ 0.25 within 3 timeunits then
CT1 ==1 within 3 time units

□[0,2] ( (¬ p1) ∨ ♢(0,3] (p2)). Here, p1: x0 ≤ 0.25
and p2: CT1 == 1

1.1 1.285

Temperature Controller in a Nuclear Reactor Linear ODEs.
1 whenever rod1 is selected then temperature in

the reactor drops below 6 deg within 8 time
units.

ψ = □[0,6] ( (¬ p1) ∨ ♢(0,8] (p2)). Here, p1: Rod1
is selected. p2: θ ≤ 6

6 1.4

2 whenever rod2 is selected then temperature in
the reactor drops below 6 deg within 8 time
units.

ψ = □[0,7] ( (¬ p1) ∨ ♢(0,8] (p2)). Here, p1: Rod1
is selected. p2: θ ≤ 6

6 1.4

Train Gate Controller Non-Homogeneous linear ODEs.

1 Globally whenever Up is 1 every 16 time units
then within every 15 to 30 Time units gate
should be opened.

ψ = □[0,16] ( (¬ p1) ∨ ♢(15,30] (p2)). P1: Up==1 P2:
gate==1.

4.328 1.41

2 Globally whenever Down is 1 and up=0 every
6 time units then within every 1 to 15 time
units gate is down.

ψ = □[0,6] ( (¬ p1) ∨ ♢(1,15] (p2)). P1: Down==1
P2: gate==0.

0.9343 1.41

Water Tank Heating System Stiff linear ODEs.
1 Globally whenever OFF is 1 within every o

to 2 time units then within every 0 to 2 Time
units ON Should be De-asserted.

ψ = □[0,2] ( (¬ p1) ∨ ♢(0,2] (p2)). P1: OFF==1
P2:ON==0.

1 1.27

2 Globally whenever OFF is 1 withing 2 time
units then Temperature drops below 99 within
2 time units.

ψ = □[0,2] ( (¬ p1) ∨ ♢(0,2] (p2)). P1: OFF==1 P2:
Temperature <0.

5.86 1.27

Fig. (7) Co-simulation framework of Steering wheel Con-
troller

V. BENCHMARKS TESTED

We implemented our methodology on five benchmarks
which are presented below. The WCRT of controllers of
these benchmarks are computed on arbitrarily selected device
family (xczu7ev-ffvc1156-2-e) of Zynq-Ultrascale+ZCU106
evaluation platform in Vivado [21] and is their critical path.
We show in every benchmark, our framework detects all level
crossings and both plant and controller execute such that
all race conditions and any eventual asynchronous commu-
nication are eliminated. We also show correlation of traces
generated by the Simulink® model and it’s implementation
in the hardware software co-simulation framework. We used
interpolation to fill in the missing trace values because of
the different time steps chosen by the variable solver while
we establish correlation between Simulink® model trace and
the implementation trace generated by hardware software co-
simulation framework. For example, in case of steering wheel
controller, trace from Simulink® model and co-simulation
framework have the trace values on different times as shown
in Table II. As can be seen that after a time step of 3.16E-9,
the next step chosen by co-simulation framework is 6.31E-09,
while the Simulink® model chose 9.47E-9. The missing trace
value for either of the traces are computed using interpolation
techniques. In this case we compute missing trace for the
Simulink® model for time 6.31E-9. Similarly, we computed
missing trace at time 9.47E-9 in co-simulation framework. All
the benchmark controllers have single state HA models which

are implemented in hardware as pure combinational circuit.

TABLE (II) Example snippet from Steering wheel controller
explaining different trace values between Simulink® and co-
simulation framework.

Time1 Cosx trace from Simulink Time2 Cosx trace from co-simulation framework

0 -0.0032 0 -0.00323
3.16E-9 -0.00316121790318423 3.16E-9 -0.00316121790318423
9.47E-9 -0.00416096702073669 6.31E-9 -0.00316121790318423
11.5E-9 -0.00417096702073669 11.5E-9 -0.00416096703073669

A. Steering Wheel Controller

The MITL properties written for this benchmark are shown
in Table I. We choose controller WCRT(1.29ns) as sample
time to get the optimal robustness and have all level cross-
ings detected. When of any level crossings are detected, the
controller responds instantaneously (within it’s WCRT) with
the corresponding decision and action, thus guaranteeing the
synchrony hypothesis. The plant samples controller response
at this robust sample time. Consequently, it takes inter-location
transition and continue evolving its ODEs. The minimum
step chosen by the plant is bound by a value greater than
the WCRT of the controller (which is 1.29 ns in this case),
in order to guarantee the fact that controllers respond faster
than the plant execution. The HA of steering wheel plant
is already presented in Section III. We also compared the
co-simulation traces with traces of Simulink® only model.
We found exactly similar traces especially at points where
level crossings occur. Moreover the correlation coefficient is
found to be nearly unity in all the cases, thus concluding that
Simulink® and hardware software co-simulation framework
behave in similar way. This confirms the accuracy of our
approach. Table III shows the correlation co-efficient between
the traces generated for cosx by Simulink® and hardware
software co-simulation framework. The traces are generated by
selecting different variable step solvers available in Simulink®.
One such trace for cosx evolution obtained from the Simulink
and hardware software co-simulation framework using ode45



(a) Steering Wheel Con-
troller: Trace comparison be-
tween Simulink®and Co-sim
Framework using ode45
solver .

(b) Switch Tank Controller:
Trace comparison between
Simulink®and Co-sim Framework
using ode45 solver.

Fig. (8) Trace comparison between Simulink®and Co-sim
framework for Steering wheel and Switch tank controller.

solver is shown in Figure 8a. The figure shows similar traces
obtained in both the cases.

TABLE (III) Correlation of cosx Evolution between
Simulink® and Co-Sim models under different solvers.

Co-Simulation
and Simulink Solver ode23tb ode45 ode23 ode113 ode15s ode23s ode23t daessc odeN

Correlation Co-efficient 0.99 0.99 0.99 0.99 0.99 0.99 0.996 0.996 1

B. Switch Tank Controller

A switch tank system [8] consist of two water tanks. Water
leaks from both the tanks at a constant rate. Water level in
these tanks is represented by continuous variables x1 and x2
respectively. The job of the controller is to keep water level
above a threshold level which we have taken as 0.25m for both
the tanks. Whenever a level crossing condition x1 ≤ 0.25 is
met for first tank then the water inflow is switched towards it
instantaneously, at this time the water should be in the second
tank above a threshold level which is taken as 1m in this
example. Similar approach is applied for second tank whose
level crossing condition is x2 ≤ 0.25. The ODEs for change
of water level in one of tanks, is described in Equation 3.

f(x)
def
=

[
ẋ1
ẋ2

]
=

[
w - v1

−v2

]
(3)

Here, w is constant flow of water into the tanks and is taken as
one, while, v1 is rate of water outflow from the first tank and
v2 is rate of water outflow from the other tank. We have taken
v1 = 0.6 while v2 = 0.5 The controller does not evolve any
ODEs and accepts water level in tanks as input and produces
discrete values (which are used to control the water flow to one
of the tanks) as outputs sent to the plant. The asynchronous
communication and the missed level crossing leading to wrong
trace is shown in Figure 9a. This is fixed (shown in Figure
9b) by choosing a robust sample time of 1.285 ns (plus
techniques specified in our co-simulation framework) which
is the controller WCRT as well, and on this sample time
value the properties mentioned in Table I are robustly justified
with maximum positive robustness. The synchrony hypothesis
is guaranteed by choosing the minimum step size of the
plant to a value greater than the WCRT (1.285ns) of the
controller. The correlation co-efficient for water level trace
x1 obtained from hardware software co-simulation framework
and Simulink® model is shown in Table IV. The value is nearly

(a) Improper water level evo-
lution because of asynchronous
communication.

(b) Correct trace after fixing
asynchronous communication.

Fig. (9) Figures showing wrong trace because of missed
level crossings and all level crossing detected while doing
synchronous communication.

unity, which confirms similar behavior between the Simulink
model and the co-simulation framework. Trace comparison
between Simulink® model and implementation traces for water
level in both tanks is shown in Figure 8 using ode45 solver
which also show similar traces obtained in both the cases.

TABLE (IV) Correlation of x1 (water level in Tank1) evo-
lution between Simulink® and Co-Sim models under different
solvers.

Co-Simulation
and Simulink Solver ode23tb ode45 ode23 ode113 ode15s ode23s ode23t daessc odeN

Correlation Co-efficient 0.99 0.99 0.99 0.99 0.99 0.996 0.996 0.99 0.9996

C. Temperature Controller in a Nuclear Reactor

This benchmark is presented in [22]. There are two control
rods in a nuclear reactor which act as coolants. The coolant
temperature must be kept within the range [θm, θM]. When
the temperature reaches a maximum value of θM, the tank
is cooled with one of the rods and only that rod should be
selected for which the time elapsed since it was last used is
≥ T time units. The rate change of temperature in the nuclear
reactor with rod1 is v2, while with rod2 is v3. x1 and x2
represent the respective time since a specific rod was used
previously. The temperature in the nuclear reactor rise at the
rate v1 while θ represents rate at which temperature change.

The ODE for the plant is described in Equation 4.

f(θ, x1, x2)
def
=

 θ̇ẋ1
ẋ2

 =

vi

1
1

 (4)

The controller model does not evolve any ODE and controls
the plant by selecting the relevant control rod to be used to
cool the reactor. The asynchronous communication between
plant and the controller will lead to missed level crossings
leading to an incorrect trace. We show this in Figure 10a.

The robust sample time chosen for the nuclear reactor is
the WCRT of the controller(1.4 ns) on which MITL properties
proven at this sample time are shown in Table I. The synchrony
hypothesis is guaranteed by choosing the minimum step size
of the plant to a value greater than the WCRT (1.4ns) of
the controller. The correlation co-efficient for nuclear reactor
temperature (θ) trace obtained from hardware software co-
simulation framework and Simulink® model is shown in Table
V. The near unity value confirms similar behavior between the
Simulink® and hardware software co-simulation framework



(a) Wrong Trace of tempera-
ture evolution.

(b) Correct trace after fix-
ing asynchronous communi-
cation.

Fig. (10) Figures showing Correct and incorrect traces in
Nuclear temperature controller.

for this benchmark. We show these traces obtained for this
benchmark using ode45 solver in both Simulink® model and
in hardware software co-simulation framework in Figure 11a.
The figure shows similar traces for temperature (θ) obtained
in both the cases.

TABLE (V) Correlation of θ (Nuclear reactor temperature)
evolution between Simulink® and Co-Sim models under dif-
ferent solvers.

Co-Simulation
and Simulink Solver ode23tb ode45 ode23 ode113 ode15s ode23s ode23t daessc odeN

Correlation Co-efficient 1 1 0.999 0.99 1 1 1 1 1

D. Train Gate Controller

A train gate controller is a hybrid system based on [23]
that consists of a train running on a circular track. The
traffic movement across the track is controlled by a Gate.
Gate is opened or closed by a controller based on the train’s
movement.

The ODE for train is defined as :

f(y)
def
=

[
ẏ
]
=

[
vf

vs

]
(5)

Here the continuous variable y represents the position of
the train which change at the rate of vs or vf depending on
it’s current position. When level crossings are detected then
this information is passed to the controller so as to decide on
the gate movement. When the position of train equals 5 units
then the down signal is asserted indicating the gate to move
down. Similarly, when train position equals 15 units then the
up signal is asserted, when train position equals 25 units then
both up and down are reset.

The ODE for the gate is is described in Equation 6.

f(x)
def
=

[
ẋ
]
=

 x
1−x
2

5 - x
2

 (6)

Here the gate position changes at the rate of x which has
different values based on it’s position.

If there is asynchronous communication between the plant
and controller, then the gate movement is impacted. One such
trajectory for train and gate is shown in Figure 12a. Here
the gate does not open or close at the right time, because
level crossings are not generated at right time, eventually
controller is unable to respond on level crossings as expected.
When the plant and controller are synchronized on a sample

time, which we select based on robustness criteria described
previously, all level crossings are generated and detected,
eventually controller responds at correct timestamps. Con-
sequently, gate opens and closes at proper time. One such
correct trace is shown in Figure 12b. The MITL properties
listed in table I are justified with a sample time which is the
WCRT of the controller (1.41ns). The synchrony hypothesis
is guaranteed upon setting the lower bound on the step size
of the plant to a value greater than the WCRT (1.41ns)
of the controller. The correlation co-efficient (which is near
unity) for train position (y) trace obtained from hardware
software co-simulation framework and Simulink® models is
shown in Table VI, confirms similar behavior between the
Simulink® and hardware software co-simulation framework.
We also show (in Figure 11b) similar traces of train position
obtained from Simulink® and hardware software co-simulation
framework using ode45 solver.

TABLE (VI) Correlation of y (train position) evolution be-
tween Simulink® and Co-Sim models under different solvers.

Co-Simulation
and Simulink Solver ode23tb ode45 ode23 ode113 ode15s ode23s ode23t daessc odeN

Correlation co-efficient 1 0.997 1 1 0.99 1 1 0.997 1

E. Water Tank Heating System

A water heating system [24] consists of a water tank with a
thermometer attached to it which monitors temperature of the
water. There is a gas burner heating water in the tank which
can be turned ON when the temperature of water falls below
a certain value T1 (T1 = 20 degrees). The burner is turned
OFF when the temperature crosses a certain value T2 (T2 =
100 degrees). The water tank is modeled as a plant HA which
is controlled by a temperature controller, which controls the
ON/OFF switch used to ignite the gas burner. The evolution
of water temperature is not purely continuous and depends on
the mode of the system, i.e., the burner, which is either ON or
OFF based on the temperature that can be below or above the
upper temperature limit T2. When the gas burner is OFF the
water temperature decreases based on Equation 7, in which,
I is the initial temperature of the water, K is a constant that
depends on nature of the tank and t is the time.

x(t) = Ie−Kt (7)
When the burner is OFF and the water temperature is T1
degrees, then it stays constant for sometime. On the other
hand when the gas burner is ON then the temperature increases
based on Equation 8.

x(t) = IeKt + h(1− eKt) (8)
The controller acts on the level crossings detected for the

water temperature and updates the switches ON,OFF while the
plant samples the controller response. The MITL properties
presented in Table I are justified on sample time of 1.27 ns
which is the controller’s WCRT. The trajectory of temperature
evolution of water on these settings is shown in Figure
13b. On the contrary level crossings are missed when plant
and controller communicate asynchronously. One such trace
of a missing level crossing when temperature crosses 100
degrees is shown in Figure 13a. The synchrony hypothesis



(a) Nuclear temperature Controller:
temperature evolution.

(b) Train gate controller: train po-
sition evolution.

(c) Water Tank heating Sys-
tem:temperature evolution.

Fig. (11) Trace comparison between Simulink®and Co-sim Framework for different benchmarks using ode45 solver.

(a) Wrong Trace of train po-
sition.

(b) Correct trace of train po-
sition.

Fig. (12) Figures showing correct and incorrect traces (be-
cause of asynch. communication) in Train Gate Controller.

(a) Wrong trace for tempera-
ture evolution of Water.

(b) Correct trace after fixing
asynchronous communication.

Fig. (13) Figures showing correct and incorrect traces in
water tank heating system.

is guaranteed upon setting the lower bound on the step size
of the plant to a value greater than the WCRT (1.27ns) of the
controller. The correlation co-efficient for water temperature
trace obtained from co-sim and Simulink® models is shown
in Table VII. Since the value is near unity, it confirms similar
behavior between the Simulink® and hardware software co-
simulation framework for this benchmark. We also plot tem-
perature evolution trace obtained from Simulink and hardware
software co-simulation model using ode45 solver and is
shown in Figure 11c. The trace is same in both the cases.

TABLE (VII) Correlation of x (water temperature) evolu-
tion between Simulink® and Co-Sim models under different
solvers.

Co-Simulation
and Simulink Solver ode23tb ode45 ode23 ode113 ode15s ode23s ode23t daessc odeN

Correlation co-efficient 0.999 0.9976 1 1 0.99 1 1 1 0.9989

VI. RELATED WORK

Recent works in efficient level crossing detection is based
on quantized state hybrid automata [14].This is a simulation
algorithm for correctly and efficiently simulating a network

of Quantized state HAs. But it has nothing to do with
co-simulation based validation technique which we propose
in this paper. Moreover, there are many approaches exist-
ing which perform co-simulation of Cyber-physical Systems
(CPS).The most common co-simulation standard is based on
the FMU [3]–[5]. Work done in [25] uses FMUs. They
demonstrate that the FMI - FMU models exported from other
tools which can be integrated into the setting of UPPAAL
SMC [26]. They used Timed Automaton to compose clocks
to achieve synchronization among different components. But
this work does not do hardware model integration, and the
idea of robust MITL validation is missing. Hence there is
no notion of hardware and software synchronization with
proper level crossing detection. Work done in [27] uses
IEEE 1516-2010 High Level Architecture (HLA) standard
for co-simulating distributed processes. They provide time
synchronization between different simulators with different
time semantics and a collection of such simulators (also
called federates) which constitute joint simulation is called
federation. They propose an architecture for a gateway federate
similar to FMI standard to perform co-simulation. Here also
the notion of robustness, hardware software synchronization
and level crossings is missing. Another work [28] which deals
in signal transformation from continuous to discrete domain
fails to address co-simulation issues. Finally, work in [29]
miss to apply efficient co-sim techniques although they use
Simulink® to model a continuous system and System-C to
model a discrete system.

VII. CONCLUSION

We have presented a novel approach of design and MITL
based validation of controllers using HIL co-simulation. This
work enables us to design fast, efficient and functionally
correct controllers, as our methodology help validate the
synchrony hypothesis, establish proper synchronization with
the plant and perform MITL based validation of the controllers
to ensure its proper functioning. There is no work done so far
which remedy the issue of missed level crossings while doing
hardware software synchronization, faster controller execution
and MITL validation. We are scaling up this methodology
so as to make it viable for composite system design and
validation.
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