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Towards Efficient Input Space Exploration for
Falsification of Input Signal Class Augmented STL

Vinayak S. Prabhu, and Meetkumar Savaliya

Abstract—In recent years black-box optimization based search
testing for Signal Temporal Logic (STL) specifications has been
shown to be a promising approach for finding bugs in complex
Cyber-Physical Systems (CPS) that are out of reach of formal
analysis tools. The efficacy of this approach depends on efficiently
exploring the input signal space, which for CPS is infinite. In this
work, we present a framework for more efficient exploration
of the input space for falsification of a class of engineering
requirements. Our first contribution is a dimensionality reduction
heuristic for optimization based falsification frameworks for
dynamical systems over this augmented logic. This heuristic
leverages the step response of the system – a standard system
characteristic from Control engineering – to obtain a smaller time
interval in which the optimizer needs to vary the inputs. Next, we
note that system behaviors on a standard class of inputs such as
on step inputs or sinusoids are often of paramount importance to
engineers, and such inputs while easy to specify as functions, are
difficult for temporal logics to capture. Our second contribution
is a formalism to augment a commonly used fragment of Signal
Temporal Logic (STL) to incorporate such signals for use in a
black-box optimization based falsification framework. Finally, we
demonstrate the effectiveness of our approach in falsification of
temporal logic specifications on three case studies over complex
Simulink models.

I. INTRODUCTION

A key part of the development of Cyber-Physical Systems
(CPS) is identification of the input space for which the system
behavior is not satisfactory. This includes testing the system
over a test suite, and more generally falsification which incor-
porates a search for test inputs that cause undesirable behavior.
Due to the complex nature of CPS models, often incorporating
differential equations and look-up tables, static analysis tech-
niques are infeasible. Fortunately, the properties engineers are
interested in involve signals that take quantitative values, and
this has opened up the field of black-box based optimization
testing. For example, a property of interest in the Air Fuel
Control system from [24] is the requirement that the air fuel
ratio be within some band. Black-box optimization testing
loops execute the system under test, compute a quantitative
metric based on the property of interest that indicates how
far the system is from violating stated requirements, and then
depending on the values computed so far, select a next input
for the next iteration of the loop. Key developments that made
this approach applicable to intricate requirements, such those
expressed with Signal Temporal Logic (STL) specifications,
were (a) development of a robustness function that quantified
the degree of violation of a temporal formula for a given trace;
and (b) development of efficient algorithms for computing
the value of this function over traces [19], [14]. A positive
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robustness function value implies boolean satisfaction of the
STL property, and a negative value implies violation. The goal
of the optimizer is to generate inputs such that the robustness
value of the system output with respect to the STL property is
negative. Over the past decade tools such as Breach. S-TaLiRo,
FalCAun have advanced this framework for falsification of
complex CPS models [32], [20], [12]. Simultaneously, efforts
are underway to develop a suite of CPS benchmarks which
can guide falsification tool improvement [15].

A basic ingredient of these approaches is the translation
of the search space over input signals – defined as functions
[0, T ] → Rn over some time domain [0, T ] – to a finite
parameter space over which the black-box optimizers typically
operate. For example, one way to do this is to pick p time
points (also known as control points) over [0, T ], specify the
n-dimensional input signal on these p time points, with the
full input signal being generated by a signal generator module
according to some interpolation scheme. Such an encoding
results in p · n parameters the optimizer has to search over.
The selection of p has conflicting implications for the search
process: (a) a smaller p value leads to input signals that
are more slowly varying and might miss input signals that
lead to the system output violating the given property; (b) a
larger p increases the number of parameters for the black-
box optimizer to search over thus making the search difficult.
Orthogonally, for debugging it is desirable to have “simpler”
signals that demonstrate property violation; thus one may wish
to prioritize a smaller number of control points.

Our first contribution in this work is the exploration of
a dimensionality reduction heuristic to reduce the number
of parameters for more efficient search of the input signal
space. Our heuristic takes inspiration from the step response
concept from the theory of Control Systems. The step response
of a system, from a given initial state, is the response of
the system when given a step input. Step response behavior
is a critical part of the analysis of control systems [26],
and overshoot, rise time, and settling time data from the
step response are key characteristics for behavior analysis of
dynamical systems. Our heuristic is to vary the input signal
not over the entire simulation horizon, but over a time duration
equal to the settling time for the step response. For example,
if the simulation horizon is 80 seconds, and we wish to have
a uniform placement of control points at 2 second intervals,
then this would result in 41 control points. If the settling time
is 20 seconds, then our heuristic would require 22 control
points (we fix a special control point to be at the beginning
of the simulation). The placement of this 20 second interval
which contains the control points is itself variable, with the
offset being determined by the optimizer. Such a heuristic, if
successful has three benefits: (1) it reduces the search space



2

for the optimizer, and (2) the falsifying inputs are simpler,
as they change over a smaller number of time points; and
(3) the falsifying inputs change over a smaller time horizon
(the settling time). Points (2) and (3) lead to inputs signals
that are more desirable for debugging.

Our second contribution is a formalization and use of typical
engineering request-response constraints in the black-box opti-
mization loop. Often requirements such as “if the input signal
is of type θip then output response must satisfy θop for some
time duration” are of interest, where θop involves only output
signals, and θip only input signal variables, and θip restricts
input signals to be of certain special standard mathematical
function classes, For instance, θip could be a type of pulse
input, or a sine wave segment. The way this has usually been
handled previously has been to encode both θip and θop as
STL sub-formulae; however the temporal logic encodings of
θip, when mathematical functions such as sinusoids or step
inputs, is usually cumbersome, and prone to errors. Our insight
is that such an encoding of input constraints is unnecessary
for such input-request output-response properties due to the
following fact. We are only interested in searching over input
signals satisfying the constraint θip; the robustness function,
if the input constraint θip is satisfied should depend only on
the output response condition θop. In addition, if the input
constraint is not satisfied, we are not interested in vacuous
satisfaction of the full requirement; this has been argued
previously in [21], [33]. That is, the utility of θip is only in
ensuring the input signals that we search over satisfy a certain
constraint, it does not have a quantitative utility unlike θop
(which tells us the degree of violation of the system output).
This means that if we can ensure that the input constraint is
satisfied for generated inputs by some mechanism, then we
can omit the θip constraint from the robustness computation
routine altogether, which in turn means that the encoding
of θip into STL is also unnecessary. Now we note that this
adherence of generated input signals to θip can be easily
enforced as the signal generation module in an optimization
framework is under our control, unlike the system output
which depends on the complex dynamics of the system. For
instance if θip is a sinusoid signal requirement, we simply
plug in a signal generator that generates a sinusoid. Since our
signal generator ensures θip being in the input, the optimizer
can focus on using the robustness function for θop to search for
an input (which is guaranteed to satisfy θip by design) which
violates θop. Usually, there are temporal constraints relating
θop to θip , for instance if θip occurs then θop is activated
for b time units, e.g., �

(
θip → �[0,b]θop

)
. We show in this

work strategies for inferring when θop becomes active with an
appropriately designed signal generator; and how to use this
knowledge to modify the black-box optimization loop. With
our proposed method, we are not restricted by STL to capture
these input requirements, and we present a formal treatment
to enlarge STL with these more general input signal classes.
This augmentation and our proposed method for the robustness
computation over this augmented logic formalizes the use
of more complex antecedent input triggering requirements in
falsification frameworks.

Finally, we implemented our heuristic in the Breach tool
and evaluated over three benchmark models from the ARCH-
COMP repository [17] for our experiments. The results

demonstrate the effectiveness of our proposed approach.
Related Work. The most closely related works are [10], [18],
[30]. The work in [10] investigated placing control points non-
uniformly in order to reduce the number of parameters for
black box search. More control points were introduced during
the search based on the optimizer performance and the gap
between control points. FALSTAR [18] is a tool that generates
input signals in segments of varying lengths. The work in [30]
investigates the idea that specialized input signal generator
classes such as pulse generators could be more efficient in
finding falsifying inputs. The general area of falsification is an
active area of research, works [3], [29], [22] investigate alter-
native robustness definitions for STL that aggregate robustness
rather than take extremal robustness values done commonly for
STL. Works [6], [7] explore sampling of input traces satisfying
patterns given by timed automata. Quantitative conformance
notions are explored in [8], [27], [9]. Treating input and output
signals differently for computing robustness is argued in [21].
In the context of request-response specifications, [11] employs
a falsification loop to generate input signal portions satisfying
input STL constraints, [2] uses a probabilistic approach to
improve the chances of input antecedent satisfaction in the
falsification process.

II. PROBLEM SETTING

A. Background

Systems, signals, traces. (finite) trace or a signal π : [0, T ]→
Rn of arity n is a mapping from a finite closed interval [0, T ]
of R+ to Rn. The time-domain of π is the time interval
[0, T ] over which it is defined. We partition signals into
input signals, and output signals. A (continuous-time) system
S :

(
R[ ]

+ → RnI
)
→
(
R[ ]

+ → RnO
)
, where R[ ]

+ is the set of
finite closed intervals [0, T ] of R+, transforms input signals
πip : [0, T ] → RnI into output traces πop : [0, T ] → RnO
(over the same time domain). At times we refer to the input-
trace output-trace combination as π : [0, T ] → RnI+nO ,
with πip and πop being the corresponding projections; that
is if πip(t) = (a1, . . . , anI ) and πop(t) = (b1, . . . , bnO ),
then π(t) = (a1, . . . , anI , b1, . . . , bnO ). For the signal value
π(t) = (a1, . . . , anI , b1, . . . , bnO ), we refer to each aj as the
value of the j-th input signal variable, and similarly for output
signal variables. Given a trace π : [0, T ] → Rk, we refer to
the sub-trace between times δ1, δ2 where 0 ≤ δ1 ≤ δ2 ≤ T as
πδ1,δ2 . Formally, πδ1,δ2 : [0, δ2−δ1]→ Rk is a trace of length
δ2 − δ1 such that πδ1,δ2(t) = π(t + δ1). We refer to the j-th
dimension of the signal π as πj , that is πj : [0, T ]→ R such
that πj(t) = dj where π(t) = (d1, . . . , dk).

Signal Temporal Logic (STL). Signal Temporal Logic (STL),
introduced in [28], extends Metric Interval Temporal Logic
(MITL) [4] with real-time signals. We consider STL formu-
las with bounded-time temporal operators defined recursively
according to the grammar ϕ ::=

T | f(z1, . . . , zn) ≥ 0 | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ϕ1 U [a,b]ϕ2,

where T is the true predicate; f is an n-ary function symbol; zi
are input/output signal variables; ϕ,ϕ1, ϕ2 are STL formulas;
¬ and ∧ are Boolean connectives that respectively indicate
negation and conjunction; and U [a,b] with a, b ∈ R such that
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0 ≤ a ≤ b is the until operator. We define additional tem-
poral operators in the standard way: the “eventually” operator
♦[a,b]ϕ stands for T U [a,b]ϕ; and the “always” operator �[a,b]ϕ
stands for ¬♦[a,b]¬ϕ.

Definition 1 (STL Semantics). Let π : [0, T ] → RnI+nO be
a signal, where π(t) = (π1(t), . . . , πnI+nO (t)). The suffix of
the trace from time t ∈ [0, T ], i.e., πt,T , is said to satisfy STL
formulae as follows [14].

(π, t) |= T; (π, t) |= ¬ϕ iff (π, t) 6|= ϕ;

(π, t) |= f(z1, .., znI+nO ) ≥ 0 iff f(π1(t), .., πnI+nO (t)) ≥ 0;

where the variables zj correspond
to the j-th dimension of π;

(π, t) |= ϕ1 ∧ ϕ2 iff (π, t) |= ϕ1 and (π, t) |= ϕ1;

(π, t) |= ϕ1 ∨ ϕ2 iff (π, t) |= ϕ1 or (π, t) |= ϕ1;

(π, t) |= ♦[a,b]ϕ iff there exists t′ ∈ [t, T ] ∩ [t+ a, t+ b]

such that (π, t′) |= ϕ;

(π, t) |= �[a,b]ϕ iff for all t′ ∈ [t, T ] ∩ [t+ a, t+ b]

we have (π, t′) |= ϕ;

(π, t) |= ϕ1 U [a,b]ϕ2 iff there exists t′ ∈ [t, T ] ∩ [t+ a, t+ b]

such that (π, t′) |= ϕ2 and for all t ≤ t′′ < t′

we have (π, t′′) |= ϕ1 ∨ ϕ2.

We say a trace π satisfies an STL formula ϕ, denoted π |= ϕ,
if (π, 0) |= ϕ.

In the above definition, we have specified the satisfaction
relation for the derived operators � and ♦ for simplicity (these
two definitions can be obtained from the others).

As an example, consider a formula ♦[1.1,3]

(
(z1 ≤ 10) ∧

(z2 ≥ 20)
)
. Suppose we have a trace π : [0, T ] → R2. The

formula has three ingredients: (1) ♦ says that at some point
in the future, its inner formula must be satisfied; (2) the ♦
subscript [1.1, 3] says that this point in the future must be in
the interval [1.1, 3] (provided it is within the signal horizon
T ; and (3) the constraint (z1 ≤ 10) ∧ (z2 ≥ 20) says that
at that future point, the first signal dimension value must be
≤ 10, and the second signal dimension value must be ≥ 20.
The formula �[1.1,3]

(
(z1 ≤ 10) ∧ (z2 ≥ 20)

)
similarly says

that at all points in the future in the time interval [1.1, 3], the
predicate (z1 ≤ 10) ∧ (z2 ≥ 20) must hold.

B. Augmenting STL with Input Classes for CPS
A commonly used fragment of STL used for CPS property

specification is of the form �[a,b](ϕ1 → ϕ2), where ϕ1 and ϕ2

are STL formulae. The formula ϕ1 in such a case is called
the triggering antecedent and the formula ϕ2 is called the
consequent. In many cases, the triggering condition involves
only input signals, and the consequent involves only output
signal variables. Often, for the engineering requirements we
are interested in, the triggering antecedents can be easily
specified as mathematical functions, but are cumbersome to
specify in temporal logics. In this section we extend STL to
incorporate these more general triggering antecedents.
Input Signal Classes. An input signal class, InSig given an
arity nI is a collection of input signals πp : [0, Tp] → RnI .
We leave the syntax of specifying signal classes open, with

the understanding that the signal class can be unambiguously
specified. While STL is one possible syntax, it is not the only
one. For example, a signal class could be specified by the set
{5 sin(ωt + θ) | 0 ≤ θ ≤ 2}. Another example is a short
pulse function of duration 2 seconds: define a pulse function
of amplitude a as

fa(t) =

{
0 for t < 1

a for 1 ≤ t ≤ 2

A pulse signal class example is {fa(t) |
fa(t) is a pulse signal, and 10 ≤ a ≤ 25}.
STLInSig: Extending STL. If an STL formula ϕop involves
only output signal variables, then we refer to it as an out-
put variable formula. Given an input signal class InSig, the
formulas of STLInSig are defined by the grammar

ψ := ϕop | �[l,u]

(
InSig∆i

→ �[∆o1 ,∆o2 ]ϕop

)
|

�[l,u]

(
InSig∆i

→ ♦[∆o1 ,∆o2 ]ϕop

) (1)

where
• 0 ≤ l ≤ u, and ∆i ≤ ∆o1

≤ ∆o2
.

• ϕop is a bounded output variable STL formula, i.e., an
STL formula (with bounded temporal operator intervals)
involving only output dimension variables of the com-
bined input-output signal.

The additions to STL are the InSig primitives InSig∆i
. We

handle these primitives as follows. InSig is an input signal
class which contains input signals of interest as triggering
antecedents. The subscript ∆i in InSig∆i

indicates only to
look at those InSig signals that have length at most ∆i. Thus
InSig∆i

⊆ InSig. A formula �[l,u]

(
InSig∆i

→ ψ∗
)

intuitively
specifies that whenever the input signal has a sub-portion that
is in InSig∆i

, then the output signal from that place must
satisfy the property ψ∗.

Definition 2 (Semantics of STLInSig). The satisfaction relation
is defined as follows. The suffix of the trace input-output trace
π (consisting of both input and output signals) from time t (for
t ≤ T the trace horizon) is said to satisfy a STLInSig property
ψ, written as (π, t) |= ψ as follows.
• For ψ = ϕop, a bounded STL formula over output signal

variables. the satisfaction relation is as for STL.
• For ψ = �[l,u](ψ

′), where ψ′ has an InSig primitive, we
require for all δ ∈ [l, u], such that t+δ ≤ T , the condition
(π, t+ δ) |= ψ′.
The satisfaction relation for ψ′ = InSig∆i

→ ψ∗ is in
turn defined as (π, t′) |= InSig∆i

→ ψ∗ provided the
following condition holds: ∀δi≤∆i such that t′+δi≤ T ,
if πipt′,t′+δi∈ InSig, then (π, t′) |= ψ∗. Here πip is the input
signal portion of the input-output composite signal π.

A trace π satisfies an STLInSig property ψ if (π, 0) |= ψ.

In the above, the clause InSig∆i
is referred to as the

triggering antecedent, as the requirement ψ∗ is to be fulfilled
only upon the triggering of the antecedent. The role of ∆i

in the subscript is to specify that we are only interested in
triggering antecedents of duration ∆i.

Example 1. Consider the formula ψ defined as
�3,10 (Pulse2 → ♦3,7ϕop) where Pulse is a class of
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input pulses. A trace π over time [0, T ] satisfies ψ, if either
(a) an input pulse of duration ≤ 2 does not start in the time
interval [3, 10]; or (b) whenever an input pulse of duration
≤ 2 starts in the time interval [3, 10], say at time tp, then
we have that some trace suffix πtp+δ,T for some δ ∈ [3, 7]
satisfies ϕop. Note that the antecedent trigger Pulse2 leaves
the input signal unconstrained apart from requiring that a
pulse be present. For example, we could have oscillatory input
from time 0 to 5, then a pulse from 5 to 6.2, and then again
oscillatory input from 6.2 till the input trace horizon T . Such
an input signal will still satisfy the triggering antecedent.

In addition to this triggering antecedent in formulae, we
also allow simple restrictions on the input signals outside the
logic, such as “input signal x(t) is a sinusoid of frequency
ω”. This differs from triggering antecedents in the formulae
in that the triggers are restricted to a short time interval and
the consequent requirement comes after the end of the trigger
interval. Simple restrictions on the input signals outside the
logic are over the entire simulation horizon, and in addition
are simple enough to not require temporal logic machinery.

STLInSig: Quantitative Robustness. The primary utility of
quantitative robustness definitions for STL has been in the
optimization based falsification framework in which the ro-
bustness function value is used to guide black-box falsifiers
towards traces that violate a given specification [13], [20]. As
the specification under consideration may involve triggering
conditions, the framework has been used to search for inputs
that satisfy the triggering constraints. It has been argued
in [21], [33] that the case engineers are interested in is
where the input triggering constraint is satisfied, and the
consequent is violated, and hence we need to treat input and
outputs differently when defining robustness. If we consider
the STLInSig fragment, the only place input variables occur is
in the antecedent, and this allows cleanly treating input and
output variables differently. First, we define the robustness
function ρϕ(π, t) ∈ R ∪ {−∞,+∞} for output variable
STL formulae ϕ over a trace π at time t, where negative
robustness values indicate violation of ϕ (this is the standard
STL robusness definition [14]):

Definition 3 (Robustness Function for Output-Variable STL).
Let π : [0, T ] → Rn where π(t) = (π1(t), . . . , πn(t))
be an output variable trace, and let µ be the predicate
f(z1, . . . , zn) ≥ 0 where each zi is an output variable. For
t ∈ [0, T ] we define the robustness value ρϕ(π, t) of ϕ over
π at time t as:

ρµ(π, t) = f(π1(t), . . . , πn(t));

where the output variables zj correspond
to the j-th dimension of π;

ρ¬ϕ(π, t) = −ρϕ(π, t); ρT(π, t) = +∞;

ρϕ1∧ϕ2(π, t) = min (ρϕ1(π, t), ρϕ2(π, t)) ;

ρϕ1∨ϕ2(π, t) = max (ρϕ1(π, t), ρϕ2(π, t)) ;

ρϕ1 U [a,b]ϕ2(π, t) =

sup
τ∈( [t+a,t+b]∩[0,T ] )

min

 inf
s∈[t,τ)

max

(
ρϕ1(π, s)
ρϕ2(π, s)

)
,

ρϕ2(π, τ)




ρ♦[a,b]ϕ(π, t) = sup
τ∈([t+a,t+b]])∩[0,T ]

ρϕ(π, τ);

ρ�[a,b]ϕ(π, t) = inf
τ∈([t+a,t+b])∩[0,T ]

ρϕ(π, τ).

The robustness ρϕ(π) of ϕ over π is defined as ρϕ(π, 0).

In the above definition, we require that t+ b ≤ T . We have
specified the robustness function for the derived operators �
and ♦ in the definition for simplicity (these two definitions
can be obtained from the others). The equations in Definition 3
are the quantitative analogues of the equations in Definition 2,
where conjunctions have been replaced with inf (or min) and
disjunctions have been replaced with sup (or max).

The robustness function for formulae involving input signal
classes is defined as follows.

Definition 4 (Robustness Function for STLInSig). Let n ∈ N,
T ∈ R+, and let π : [0, T ]→ Rn be an input-output trace, with
πop being the output signal portion of π. Given an STLInSig

formula ψ, the robustness value ρψ(π, t) of ψ over π at time
t is defined according to the following cases:
• If ψ = ϕop, an output-variable formula, then ρψ(π, t) =
ρψ(πop, t) according to Definition 3.

• If ψ = �[l,u]

(
InSig∆i

→ ψ∗
)
, then the robustness value

is defined as ρψ(π, t) =

∞ if ∀δ1 ∈ [l, u] and ∀δ2 ≤ ∆i

we have πt+δ1,t+δ1+δ2 /∈ InSig;

inf
δ1∈[l,u],
δ2≤∆i,

πt+δ1,t+δ1+δ2
∈InSig

ρψ
∗

(πop, t+ δ1) otherwise,

where ρψ
∗
(πop, t+ δ1)

is as in Definition 3.
(2)

The robustness value ρψ(π) of ψ over π is defined to be
ρψ(π, 0).

We explain Equation 2. The first case refers to the vacuous
satisfaction of the specification ψ due to the triggering an-
tecedent never holding for any sub-trace πt+δ1,t+δ1+δ2 . In our
falsification framework, our generated input signal will ensure
such vacuity does not occur, hence we assign +∞ to this case.
The second case is for non-vacuous satisfaction/violation, and
for this a quantitative value is relevant. We compute the lowest
possible value of ρψ

∗
(πop, t + δ1), the robustness value of

the output-variable formula consequent for such δ1 where the
triggering antecedent holds at time t+δ1, that is the sub-trace
πt+δ1,t+δ1+δ2 ∈ InSig.

As in the case of standard STL, a positive robustness
value implies satisfaction of the formula, and a negative value
implies violation.

Proposition 1. Let n ∈ N, T ∈ R+, let π : [0, T ] → Rn be
an input-output trace, and let ψ be an STLInSig formula.

1) If ρψ(π) > 0 then (π, 0) |= ψ.
2) If ρψ(π) < 0 then (π, 0) 6|= ψ.

III. FALSIFICATION VIA OPTIMIZATION

Models of CPS are complex, and are usually not amenable
to formal analysis. In this work, we view CPS models (or
actual physical systems themselves) as black-box systems: for
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a system S, given any input πip, we can execute S on πip
and observe the output S(πip) (we assume the system output
includes a copy of the system input), but we do not have
further access to S and cannot statically analyze the system to
compute an input for which the system output would violate a
given specification. In recent years, a black-box optimization
based approach has been shown to have promise for the task of
searching for falsifying inputs to such complex Cyber-Physical
Systems. These approaches leverage Proposition 1 which says
that it suffices to get an input for which the system output
has negative quantitative robustness as a negative robustness
value implies an output trace which violates the corresponding
logical specification.

Proposition 2. Let n ∈ N, T ∈ R+, let πip : [0, T ] → RnI
be an input signal such that the corresponding system input-
output trace is S(πip) . Let ψ be an STLInSig formula.

1) If ρψ (S(πip)) > 0 then the system S when given the
input signal πip satisfies ψ.

2) If ρψ (S(πip)) < 0 then the system S when given the
input signal πip violates ψ.

Thus this approach reduces the falsification problem to an
optimization one. One can employ an optimizer to compute:

min
πip∈InpSet

ρψ (S(πip)) (3)

where InpSet is the set of input signals to optimize over. Recall
that an input signal is a function πip : [0, T ] → RnI . Thus
the optimization search in Equation 3 is over a set InpSet of
functions.

A Black-Box optimization based approach invokes optimiz-
ers that do not have access to the structure of the function
f being optimized. Black-box optimizers such as Simulated
Annealing based optimizers [1], and CMA-ES [23] have an
optimization space that is different than the one in Equation 3.
These optimizers optimize functions f : D1 × . . .×Dp → R,
where each Di is a subset of R, usually a bounded inter-
val [li, ui]. Hence, those optimizers are heuristically solving
minxi∈Di f(x1, . . . , xp).

In order to solve the optimization problem in Equa-
tion 3, we have to use a parameterization function SigGen :
(D1 × . . .×Dp) → ([0, T ]→ RnI ). The parameterization
function SigGen takes a tuple of reals numbers (d1, . . . , dp)
and generates a signal πip : [0, T ] → RnI . The most
widespread parameterization strategy is that of control
points [12], [5], [16], [15] Typically p time-points are cho-
sen uniformly over the simulation horizon, and for each of
these time-points tj , there is a corresponding nI dimensional
(dj1, . . . d

j
nI ) vector where each djk is in the range of the

k-th dimension of the input signal. The signal πip is then
constructed from these p nI -tuples by some interpolation
scheme, for example linear interpolation. Hence the optimiza-
tion problem solved is.

min
xi∈Di

ρψ (S (SigGen(x1, . . . , xp))) . (4)

A uniform placement of control points is done in usually
two manners.

1) A fixed number α of control points is chosen according
to engineering intuition, and these α points are placed

uniformly over the simulation horizon. As each control
point corresponds to nI values for the nI dimensional
input signal, this results in α · nI parameters in Equa-
tion 4 that the optimizer has to search over.

2) An inter control point time duration is chosen, and
then control points are placed uniformly with this inter-
point duration throughout the simulation horizon. For
example, if the inter control point time duration is
β time units, this results in

⌈
T
β

⌉
+ 1 control points,

and correspondingly nI ·
(⌈

T
β

⌉
+ 1
)

parameters for the
optimizer.

It is desirable to have a strategy which uses as few a
number of control points as possible as (1) a smaller number
of control points gives a nI multiplicative benefit for the
number of parameters for the optimizer to search over –
this significantly improves optimizer performance; and (2) a
smaller number of control points increases the interpretability,
and hence usefulness, of falsifying inputs if any, as this
facilitates debugging of the system under test. However, a
conflicting fact is that reducing the number of control points
leads to signals that may be more slowly varying than needed
to properly test the system.

A. Utilizing the Step Response
The step response of a system from a given initial state

is the response of the system when given a step input u(t)
which is 0 for t < 0 and A for t ≥ 0 for some constant
A for single input single output systems, with appropriate
extensions for multiple input multiple output (MIMO) systems.
Step response behavior is a critical part of the analysis of
control systems [26], and overshoot, rise time, and settling
time are part of key characteristics for behavior analysis of
dynamical systems.

In our work we propose a heuristic to reduce the number
of control points based on the step response, notably based on
the settling time of the system. The settling time is defined as
the time elapsed from when a step input is applied to when
the system enters and stays within a band of the final steady
state value. Matlab R© provides a function stepinfo, that
computes settling time values (in addition to the other step
response entities). Note that we do not propose monitoring
the system over a settling time period; rather a settling time
period is where we place the control points and hence vary
the input signal. A factor to consider is the choice of where
this settling time period should be. If the settling time is tsettle
time units, the naive choice is have the control point placement
interval as [0, tsettle]. However, this choice is suboptimal, for
instance when the energy needs to accumulate in the system
affecting system dynamics later in the execution. We propose
the control point placement interval as the floating interval
[tα, tα + tsettle], where tα is itself a variable, hence the offset
of the tsettle-length control point placement interval is also
determined by the optimizer. In addition to placing the control
points in this interval, we also need to place two additional
control points, one at 0 and one at the simulation horizon T
so that the input signal over the entire simulation horizon can
be constructed via interpolation.

For MIMO systems, we compute the settling time for each
input variable, output variable pair (holding the other input
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signals at some nominal value in their ranges), and then take
the maximum of these settling times as tsettle. For systems
with a fast response time, tsettle may be a small number, and
placing control points in this interval may lead to input signals
with high variance (compared to the simulation horizon); such
input signals may not be realistic in an engineering context.
In such a case, one may choose to place the given number
of control points over a larger interval. We also choose to
make the value of the input signal at time 0 also variable as
the initial signal values can have long lasting effects. The last
control point is at time tα + tsettle, and the signal can be kept
constant after that till the end of the simulation horizon. Note
that if the input signal is over nI variables, and there are α
control points (including the one at time 0), then this strategy
results in α · nI + 1 parameters for the black box optimizer
(the +1 is due to the additional variable tα).

B. Handling InSig Primitives in Formulae
In this section we examine computing the robustness func-

tion ρψ (S (SigGen(x1, . . . , xp))) when the formula ψ has an
InSig primitive. We note that this computation in our frame-
work is only used in the optimization problem in Equation 4.
This simplifies handling of the robustness computation as
follows. First, we observe that in order to use a black box
optimization framework, we need to construct a parameteri-
zation function SigGen. Since this construction is completely
under our control, we can by design state what are the input
signal portions πt,t+δ2 such that the signal portion belongs to
InSig as required in Equation 2. We explain with an example.
Suppose our triggering input signal class is a rise signal that
goes from a low value to a high value in a very short amount
of time (e.g., 0.05 time units), in almost a step fashion. It is
easy to design a parameterization function using control points
or other mechanisms that will by design (1) generate input
signals πip = SigGen(x1, . . . , xp) that belong to this class; and
(2) lead to inferable input signal portions πipt,t+δ2 ∈ InSig, i.e.,
we know what are the t, δ2 pairs that lead to the input signal
being in InSig. In other words, we are by design generating
πipt,t+δ2 ∈ InSig events at desired time-points t + δ2. Since
we are designing where the triggering InSig events happen,
we can use this information to compute the robustness value
of a formula having InSig primitives as follows.

Suppose we have a generated signal πip =
SigGen(x1, . . . , xp) such that there is only one t, δ2
pair such that πipt,t+δ2 ∈ InSig. Then for the formula

ψ = �[l,u]

(
InSig∆i

→ �[∆o1 ,∆o2 ]ϕop

)
we have π |= ψ iff

t ∈ [l, u] and π |= �[∆t+o1 ,∆t+o2 ]ϕop. Along similar lines, for
the robustness value, we have

ρψ (S (πip)) =

{
∞ if t /∈ [l, u]

ρ�[t+∆o1
,t+∆o2

]ϕop (S (πip)) otherwise
(5)

If rather than one t, δ2 pair such that πipt,t+δ2 ∈ InSig, we
have several such pairs, we can similarly construct a procedure
to eliminate the InSig primitive by taking a conjunction,
provided the number of such pairs is finite. This was for the
case of a particular input signal πip = SigGen(x1, . . . , xp).
In the optimization problem in Equation 4, the input signals
vary depending on the choice of the optimization variable. We

can obtain an equivalent optimization problem leveraging the
insight above.

Proposition 3. Consider the formula ψ =

�[l,u]

(
InSig∆i

→ �[∆o1 ,∆o2 ]ϕop

)
. Suppose SigGen

is a parameterization strategy such that for any
(x1, . . . , xp) ∈ D1 × . . . Dp we have exactly one timepoint t
(which we denote as tg(x1, . . . , xp)), and one δ2 ≤ ∆i such
that the generated input signal πip = SigGen(x1, . . . , xp)
contains the subsignal πipt,t+δ2 ∈ InSig. Then the the
optimization problem in Equation 4 has the same value as
the following optimization problem.

min
(xj1,∈...,x

j
p)∈D1×...Dp

ρθ(x
j
1,...,x

j
p)
(
S
(
SigGen(xj1, . . . , x

j
p)
))

.

(6)
where θ(xj1, . . . , x

j
p) = �[tg(xj1,...,x

j
p) +∆o1

, tg(xj1,...,x
j
p) +∆o2

]ϕop.

Note that in Equation 6, the formula for the robustness
function depends in each iteration of the optimizer, that is
when the optimizer changes its parameters xj1, . . . , x

j
p in the

j-th iteration, the formula θ(xj1, . . . , x
j
p) also changes. In

comparison, the usual approach for black-box optimization
based falsification has been to keep the formula the same
during the optimization process. Similar results hold for
�[l,u]

(
InSig∆i

→ ♦[∆o1
,∆o2

]ϕop

)
, and for cases where we

have a multiple, but finite number of InSig generation events
in the same input trace.

Proposition 3 can be used in a tool framework
such as Breach as follows. In the normal optimiza-
tion flow, a black-box optimizer repeatedly computes pa-
rameterization instantiations (x1

1, . . . , x
1
p), . . . , (x

j
1, . . . , x

j
p)

and Breach computes the robustness values for each
instantiation in a loop, ρψ

(
S
(
SigGen(x1

1, . . . , x
1
p)
))
, . . . ,

ρψ
(
S
(
SigGen(xj1, . . . , x

j
p)
))

. The formula for the robust-
ness computation remains the same – ψ – for each param-
eterization instantiation. In the case of formulas in STLInSig

involving InSig primitives, Proposition 3 implies that we can
use the existing implemented routines for standard STL in
Breach provided we change the formula appropriately for
different parameter instantiations.

There is another method to take advantage of the fact
that the design of the parameterization function is under
our control. In contrast to the previous method, this second
method does not require changing the formula for different
parameterization instantiations.

Proposition 4. Consider an STLInSig formula
�[l,u]

(
InSig∆i

→ ψ∗
)

where ψ∗ is �[∆o1 ,∆o2 ]ϕop, or
♦[∆o1

,∆o2
]ϕop. Suppose SigGen is a parameterization scheme

for which there is an STL formula ϕip over only input
variables (not having any InSig primitives) such that the
following conditions hold for all (x1, . . . , xp) ∈ D1 × . . . Dp

where Di is the range for xi:
1) there exists t and δ2 ≤ ∆i such that

SigGent,t+δ2(x1, . . . , xp) ∈ InSig; and
2) SigGent,t+δ2(x1, . . . , xp) ∈ InSig for δ2 ≤ ∆i iff

SigGent,T (x1, . . . , xp) |= ϕip.
Then SigGen(x1, . . . , xp) |= �[l,u]

(
InSig∆i

→ ψ∗
)

iff
SigGen(x1, . . . , xp) |= �[l,u] (ϕip → ψ∗).
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Proposition 4 states that if a input signal formula ϕip

exists such that if we restrict input signal to be those
generated from the parameterization scheme satisfying the
conditions of the proposition for the formula ϕip, then
the the subtrace SigGent,t+δ2(x1, . . . , xp) is in InSig iff
SigGent,T (x1, . . . , xp) |= ϕip; that is, the formula ϕip captures
the signal class InSig provided we have a signal parameteri-
zation strategy SigGen satisfying the stated conditions. In this
case, one can replace the formula �[l,u]

(
InSig∆i

→ ψ∗
)

with
�[l,u] (ϕip → ψ∗) in the black-box falsification loop, provided
we use a robustness definition ρ that treats input antecedents
differently from output consequents as in Definition 4; that is
the ρ is such that ρϕip→ψ∗(π, t) equals ∞ if (πip, t) 6|= ϕip

and equals ρψ
∗
(πop, t) as in Definition 3 when (πip, t) |= ϕip;

where πip and πop are the input and output portions of the
input-output trace π. Note that such an input formula ϕip might
not always exist for a given input signal class InSig, in which
case we have to rely on Proposition 3.

Example 2. Consider a InSig class defined as a set of signals
that have a low value for 0.5 seconds, then a steep rise within
0.05 seconds to a high value which is held for 0.5 seconds.
Hence the InSig class defines a particular type of signals that
have a rise event. An input signal belonging to this class
occurs as a subsignal from 10 to 11.05 seconds in Figure 1.
The signal has a low value from 10 to 10.5 seconds, then it
rises steeply to a high value in 0.05 seconds, and then stays at
that high value for another 0.5 seconds. Now consider an STL

Fig. 1. Example: rise Input Signal

formula taken from [17]: ϕip = (θ < 8.8)∧♦[0,0.05](θ > 40).
One can construct input signals very brief spikes such that the
signal goes from a low value to a high value and then back
again to a low value within 0.05 seconds. Such a signal would
satisfy the formula ϕip, but it does not capture the design
intent. Consider a signal parameterization strategy which has a
four control point segment, where the time placement of these
points in 0, 0.5, 0.55, 1.05, with the constraint that the signal
values at the first two control points, and the last two control
points is the same. Under this constraint, if the generated signal
SigGen(x1, . . . , x4) satisfies ϕip, then it also is in the specified
InSig class of our example.

IV. EXPERIMENTS

We implemented our approach in the Breach tool. Three
benchmarks from the ARCH-COMP repository [17] were
used for our experiments. These benchmarks are Simulink R©

based models of complex control systems, and have been used
widely in CPS falsification community [16], [15].

Each benchmark model has various associated temporal
logic specifications. Some involve only output variables, i.e.,
these are InSig free, and some have input signal class con-
straints. We employed the CMA-ES black-box optimizer in

Breach, and gave a fixed simulation budget, that is, the number
of input signals over which the system was executed was fixed.
Due to the stochastic nature of the optimizers, the resulting
best robustness values (the smaller the value, the better for
falsification) in repeated experiments were different. Bearing
this is mind, we ran multiple experiments with the same
parameters (but with different seeds).

InSig free formulae. For the baseline input signal exploration
strategy, we generated signals using a uniform placement of
control point over the simulation horizon, with a constant
inter control point (CP) time distance. This inter CP distance
was chosen based on the ARCH-Comp reports [16], [15], and
was kept the same between the baseline, and our proposed
approach to have a fair comparison. For our heuristic, we
reduced the number of control points by reducing the interval
in which we placed the CPs; from the entire simulation horizon
of the baseline, to a time interval approximately corresponding
to the settling time as argued in Subsection III-A. As our
systems are MIMO systems, we looked at the step response
of each input-output pair (keeping the other input constant,
using the stepinfo() routine in Matlab R© for a band of
5% of the final value, and took the largest settling time.
We performed two sets of experiments for this reduced time
interval; one where the reduced interval had floating placement
(the placement of the floating interval being an optimization
variable, and one where the reduced interval had a fixed
placement from the start of the simulation.

Formulae with InSig. We considered two InSig classes in
our experiments, those capturing rise and fall events, along
the lines as in Example 2. If we use a uniform control
point placement strategy for the baseline as for the InSig free
formulae, this would result in all generated input signal not
satisfying the triggering antecedent (the antecedent requires
a steep rise within 0.05 seconds). The antecedent getting
triggered requires control point placement at 0.05 second
intervals, which in a uniform placement strategy results in
too large a number of optimization variables (in addition to
unrealistic input signals). As a result, for the baseline, we
generated a fixed set of input signals with one rise event,
where the rise event for the j-th signal occurred at j seconds;
and we took the best robustness value corresponding to this
set of fixed signals. Hence the baseline in this case did not
involve an optimizer. For both the baseline and our heuristic,
we chose the interval in which to vary the signal again to be
of length the settling time. The non-rise and non-fall portions
had uniformly placed control points of inter-CP distance 2.
The rise/fall portion of the input took another 1.05 seconds.

Optimizer/Experiment Parameters. CMA-ES allows setting
both the maximum number of function evaluations (which
is the same as the maximum number of simulations for the
Simulink model), as well as the maximum time limit per
experiment. Table I gives the number of experiments for each
logical specification, and the maximum number of function
evaluations allowed per experiment. The ballpark experiment
times were 10 minutes for AT, 7 minutes for AFC, and 2 hours
for WT. The experiment time was primarily determined by the
simulation time for the corresponding Simulink model.
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TABLE I
EXPERIMENTAL SETUP FOR EACH BENCHMARK

Benchmark # Experiments
per property

# Objective evaluations
per experiment

AT 20 800
AFC 30 800
WT 20 200

A. Automatic Transmission (AT)
This is a model of an automatic transmission system derived

from model from Mathworks. For our purposes, there are two
input variables throttle, brake; and three outputs RPM , gear
and speed . The input ranges are throttle ∈ [0, 100] and
brake ∈ [0, 325] (both can be active at the same time). A
description of the model can be found in [25]. The main
components of the model are three subunits for the engine, the
transmission, and the vehicle. The closed-loop engine block
computes the engine’s RPM from the input signals throttle
and impeller torque. Further, the transmission block computes
the output torque and impeller torque from the engine’s RPM
(computed by the engine block), gear value and transmission
RPM. The gear status and transmission RPM are computed by
a closed-loop gear block and the vehicle block respectively.
The vehicle block computes the output signal speed and the
transmission RPM from the output torque (coming from the
transmission block) and the input signal brake. Meanwhile,
the gear block takes vehicle speed, and commands to up-shift
or down-shift the gear from the provided throttle We used
the following slight modifications of specifications from [33].
The minor modifications were made to accept more exe-
cutions as good, by increasing the constants; for example,
the specification ϕ2

AT was changed from � (speed ≤ 120) to
� (speed ≤ 160).

ϕ1
AT = � ((gear = 3)→ speed ≥ 20) (7)

ϕ2
AT = � (speed ≤ 160) (8)

ϕ3
AT = � (RPM ≤ 4800) (9)

ϕ4
AT = � ((gear = 4)→ speed ≥ 35) (10)

Experiment Parameters. We used a simulation horizon of 120
seconds and placed CPs at 2 second intervals for the baseline;
thus the baseline had 120/2 + 1 + 1 = 62 control points.
For our heuristic, we identified 52 seconds as the settling
time. This is a MIMO system, we looked at the step response
of each input-output pair (keeping the other input constant),
using the stepinfo() routine in Matlab R© for a band of
5% of the final value, and took the largest settling time.
We chose the same 2 second inter-CP distance as in the
baseline. This resulted in 52/2 + 1 + 1 = 28 control points.
The placement of the this smaller time interval was itself an
optimization variable. The full signal was constructed using
linear interpolation. We ran 20 experiments in each case, each
experiment evaluated the system over 800 inputs.

B. Air Fuel Control (AFC)
The model from [24] contains an air fuel controller for a

powertrain model which aims to keep air-to-fuel ratio close
to the stoichiometric ratio of 14.7. This is the ideal for the

vehicle performance concerning the fuel consumption and
is a key to maintaining vehicle response, carbon emission,
and vehicle efficiency. The Simulink model is made up of
numerous subsystems containing various types of continuous
and discrete blocks, including look-up tables and a hybrid
automaton. The Inputs of this system model are PedalAngle
and EngineSpeed , the output for our purpose is the air-to-fuel
ration AF . We would like this ratio to be as close as possible
to the reference air-to-fuel ratio AFref which is a constant
14.7. The input PedalAngle range is [0, 61.2] in normal mode,
and [61, 2, 81.2] in power mode. The engine speed range is
[900, 1100].

We used the following two properties from [17], with larger
constants to allow more relaxed requirements.

ϕ1
AFC = �[11,50] (|AF −AFref | < 0.03 ·AFref )

for input range (normal)
0 ≤ PedalAngle < 61.2

(11)

ϕ2
AFC = �[11,50] (|AF −AFref | < 0.06 ·AFref )

for input range (power)
61.2 ≤ PedalAngle < 81.2

(12)

We also modified two requirements from [17] to get
two STLInSig formulae with input triggering rise and fall
events, and the input PedalAngle being in normal mode
0 ≤ PedalAngle < 61.2.

ϕ3
AFC = �[11,50]

(
rise1.05 →

(
�[1,5]|AF −AFref | < 0.02·AFref

))
(13)

ϕ4
AFC = �[11,50]

(
fall1.05 →

(
�[1,5]|AF −AFref | < 0.02·AFref

))
(14)

The rise signal class denotes signals that have a low constant
value for 0.5 seconds, then a steep rise to a high value within
0.05 seconds, which is then held constant for another 0.5
seconds (see Example 2), and similarly for the fall signal class.
A low value is defined to be a value in the range [0, 8.7], a
high value is in the range [40.1, 61.2]. The formulae capture
the temporary relaxed requirements on the air-to-fuel ratio
following a rapid change in the input.
Experiment Parameters. The simulation horizon was 50 sec-
onds. The inter-CP distance was kept at 2 seconds for the
InSig free formulae for both the baseline and our heuristic.
The baseline had 50/2+1+1 = 27 control points. The settling
time from the step response was computed to be 12 seconds
for a 5% band. This resulted in 12/2 + 1 + 1 = 8 control
points.

For the formulae that had rise and fall triggering con-
straints, for our heuristic we used 6 CPs at 2 second intervals
to generate the non-rise and non-fall portions, and we used
4 additional CPs placed at t, t + 0.5, t + 0.55, t + 1.05 (for
varying t to generate the rise and fall sub-portions of the pedal
angle input. An example of a generated input is the signal in
Figure 1. For the rise and fall experiments, we used the earlier
CP placement for the engine speed input as engine speed was
not part of the triggering constraint. We solved the falsification
optimization problem using the reduction from Proposition 3,
hence each iteration of the optimization loop used a different
temporal formula. For the baseline, we used a fixed pulse (low
value 5, high value 50), and we constructed input signals with
this single pulse starting at 11, 12, 13, 14, . . . 44 seconds (the
consequent clause after the pulse, that took 1.05 seconds, was
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for 5 additional seconds, and the simulation horizon was 50
seconds). For the rise rise case, the signal had a constant
value of 5 before the pulse, and linearly dropped to 0 over
the simulation horizon after the pulse, and similarly for the
fall case. Thus, in the baseline, the only variable was the time
placement of the pulse.

In all cases, the full signal was generated using linear
interpolation. We ran 30 experiments in each case, each
experiment evaluated the system over 800 inputs.

C. Wind Turbine (WT)
The model is a simplified wind turbine model proposed

in [31] The input to the model is the wind speed v and outputs
are the blade pitch angle θ, generator torque Mgd, the rotor
speed Ω and demanded blade pitch angle θd [15]. The input
wind speed is constrained by 8 ≤ v ≤ 16. The model has
two configuration, we used the configuration “Allruns” which
allows variable wind speeds as inputs. We used specifications
from [15], with minor modifications to the constants to relax
the specifications.

ϕ1
WT = �[30,200] (θ ≤ 14.4) (15)

ϕ2
WT = �[30,200] (Ω ≤ 14.5) (16)

ϕ3
WT = �[30,200]

(
♦[0,5] (|θ − θd| ≤ 1.6)

)
(17)

ϕ4
WT = ♦[190,195] (|θ − θd| ≤ 1.6) (18)

We constructed formula ϕ4
WT as a derived implication of the

formula ϕ3
WT.

Experiment Parameters. We used a simulation horizon of 200
seconds, with an inter-CP distance of 5 seconds for both the
baseline and our heuristic. The baseline had 200/5+1+1 = 42
control points. The largest settling time from the step response
data was 25 seconds. This resulted in 25/5+1+1 = 7 control
points. We ran 20 experiments in each case, each experiment
evaluated the system over 800 inputs.

D. Interfaces of Benchmarks
A summary of the input and output signals of the bench-

marks is given in Table II.

TABLE II
BENCHMARKS WITH INPUT AND OUTPUT SIGNALS

Model Input Signals Input Ranges Output Signal
AFC Pedal Angle [0,100] AF (air-to-fuel ratio)

Engine Speed [900,1100]
AT throttle [0,100] speed

brake [0,325] RPM
gear

Wind Turbine wind [8,16] Theta (Θ)
Theta d (Θd)
Omega (Ω)
Mg (Mgd)

E. Results: Falsification Rates
Table III presents the falsification results of our experiments.

It gives the falsification rate, as well as the average number of
test inputs required to falsify the given formulae. Falsification
was deemed to have occurred when the robustness value turned
negative (Proposition 2). Our proposed method varies the
placement of the control point interval with the placement

being governed by the optimizer. For the AT benchmarks,
our proposed method performs significantly better than the
baseline strategy. For ϕ2

AFC, we also perform significantly
better. For ϕ1

AFC while we have a comparable falsification
rate as the baseline, the simulation iteration at which we first
falsify is somewhat higher. The other two AFC experiments,
ϕ3

AFC, ϕ
4
AFC. had input triggering constraints, the rise and

fall triggering constraints, and our method with circumventing
STL for the input constraints gets a perfect falsification rate
compared to no falsifications in the baseline. For WT, we
perform somewhat worse for ϕ2

WT, significantly worse in
ϕ1

WT, and for the other two, both the baseline and our method
were unable to falsify.

TABLE III
FALSIFICATION RATES. FR: % SUCCESSFULLY FALSIFIED; AVG # OBJ

EVAL: AVERAGE NUMBER OF OBJECTIVE EVALUATIONS AT WHICH FIRST
FALSIFIED

Model Property Baseline Proposed Heuristic
FR % Avg # Obj eval FR % Avg # Obj eval

AT ϕ1
AT 15 180 100 3

ϕ2
AT 0 – 100 53

ϕ3
AT 0 – 95 64

ϕ4
AT 50 364 100 4

AFC ϕ1
AFC 76.66 208 73.33 400

ϕ2
AFC 0 – 66.67 334

ϕ3
AFC 0 – 83.33 39

ϕ4
AFC 0 – 70 48

WT ϕ1
WT 80 79 5 163

ϕ2
WT 100 35 75 56

ϕ3
WT 0 – 0 –

ϕ4
WT 0 – 0 –

F. Results: Robustness Value Minimization
While the high level goal is falsification, engineers are

concerned with how far away the system is from failure, or
the degree of failure, that is they are concerned with the actual
robustness values, not just whether the robustness value is
negative or not. For example, a positive robustness value that
is close to 0 may be viewed as indicating a problem in the
system that needs to be investigated. Table IV presents the
robustness values for the benchmarks (the objective was to
get as low a robustness value as possible). “Floating interval
placement” is for the heuristic where the placement of the
control point interval was variable, and decided by the opti-
mizer. “Fixed Interval Placement” is for the fixed placement
of this interval, with the interval starting from time t = 0.
We also normalized the robustness values. Normalization was
done by multiplying the robustness value by 100/c where
c was the constant the (error) signal (e.g., the error signal
|AF −AFref | in ϕ3

AFC) was compared to in the formula. We
used two aggregate measures for comparing performance: avg
– the average robustness over different experiments (with the
same parameters); and avg2 – the average robustness over the
top 50% of the experiments. We used the second measure as
in some benchmarks, the worst/best 30-40% of the robustness
values were heavily skewing the results overall otherwise in
the standard average.
Floating versus Fixed Interval: Some of the experiments did
not see much improvement (lower values are better) from a
floating CP interval compared to a fixed interval, however
some saw significant improvement, for instance in ϕ2

AFC.
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TABLE IV
RESULTS COMPARISON FOR BASELINE, FLOATING INTERVAL PLACEMENT, AND FIXED INTERVAL PLACEMENT; avg/std: NORMALIZED AVERAGE/STD

ROBUSTNESS; avg2/std2 : NORMALIZED AVERAGE/STD ROBUSTNESS OF TOP 50%

Model Property Baseline Floating Interval Placement Fixed Interval Placement
avg std avg2 std2 avg std avg2 std2 avg std avg2 std2

AT
(62;28 CPs) ϕ1

AT 3.804 2.2 2.608 2.65 -0.877 1.16e-3 -0.878 2.63e-4 -0.877 1.54e-3 -0.877 2.32e-4

ϕ2
AT 1.570 0.732 1.018 0.388 -0.694 0.120 -0.780 0.063 -0.752 0.134 -0.854 0.045

ϕ3
AT 0.634 0.339 0.514 4.89e-3 -4.023 1.09 -4.362 0.028 -4.280 0.077 -4.332 0.048

ϕ4
AT 1.230 1.57 -0.276 0.106 -0.524 1.02e-3 -0.525 0.28e-3 -0.523 1.55e-3 -0.524 0.377e-3

AFC
(27;8 CPs) ϕ1

AFC -8.004 9.06 -15.102 6.83 -5.646 13.1 -13.991 11.5 14.892 24.1 -4.443 16.1

ϕ2
AFC 32.154 7.24 27.029 4.67 2.800 21.7 -12.925 3.95 32.019 9.99 24.024 4.23

(10 CPs) ϕ3
AFC 97.279 2.41 94.728 3.08 -125.78 60.5 -170.92 51.7 -17.586 34.593 -44.753 25.295

ϕ4
AFC 95.068 4.44 90.136 5.69 -83.74 45.2 -122.28 30.3 -5.406 29.422 -26.340 28.367

WT
(42;7 CPs) ϕ1

WT -0.007 0.103 -0.066 0.0294 0.319 0.2 0.176 0.139 0.529 0.272 0.309 0.114

ϕ2
WT -0.367 0.107 -0.450 0.0374 -0.0848 0.341 -0.313 0.0862 13.113 0.417 12.787 0.0883

ϕ3
WT 5.475 2.56 3.469 1.09 14.060 4.74 10.331 2.69 83.027 0.587 82.794 0.756

ϕ4
WT 43.306 8.58 36.200 3.44 59.252 17.66 46.540 11.65 100 0 100 0

Floating point was superior in all, except in ϕ2
AT, where the

miniscule difference (less than 0.1% in the robustness value
average) can be chalked to stochasticity of the optimizer.
Floating versus Baseline: Our floating heuristic performed bet-
ter than the baseline (lower values are better), except in three
cases: ϕ1

AFC (1.1% higher robustness value average), ϕ3
WT

(6.86% higher robustness value average), and ϕ4
WT (10.3%

higher robustness value average)), where the comparison was
between the normalized avg2 values.

V. CONCLUSION

In this work we presented a formal treatment of augmenting
STL with general input signal class primitives, obtaining the
logic STLInSig for use in a black-box falsification framework.
We presented a careful analysis which showed how to incor-
porate these more general signals, that are difficult to capture
in an STL framework alone, in the black-box optimization
loop by changing the temporal logic formula of the robustness
function in each iteration of the loop (Proposition 3). We
also presented and explored a heuristic to reduce the interval
size over which input signals need to be varied in order to
falsify requirements. Note that we do not reduce the simulation
horizon. Additionally, while we reduce the interval duration
over which to vary the input signals, where this interval lies
is itself variable, and this position is searched for by the
optimizer. Our interval reduction heuristic is based on the
settling time concept from Control Systems; and the smaller
interval is especially useful for debugging purposes as it
results in simpler error demonstrating inputs that have smaller
signal variation. For most of the benchmarks, our heuristic
resulted in better performance evidenced by lower (i.e., more
error indicating) robustness values. For the few benchmarks
where our heuristic resulted in higher robustness values, the
robustness value increase was small. Thus, the positives of the
obtained simpler erroneous input signals makes this heuristic
promising for debugging purposes.

As future work, the reduced smaller interval can be com-
bined with other heuristics to improve the performance further;
such as non-uniform placement of control points. Other direc-
tions are to explore other control systems concepts to obtain
more targeted intervals over which to vary the input signals

in order to reduce the dimension of the input search space
further, and to explore which input signal classes are good for
falsification.
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Temporal logic falsification of cyber-physical systems using input pulse
generators. In 8th International Workshop on Applied Verification of
Continuous and Hybrid Systems (ARCH21), 2021, volume 80 of EPiC
Series in Computing, pages 195–202. EasyChair, 2021.

[31] Simone Schuler, Fabiano Daher Adegas, and Adolfo Anta. Hybrid mod-
elling of a wind turbine. In ARCH@CPSWeek 2016, 3rd International
Workshop on Applied Verification for Continuous and Hybrid Systems,
volume 43 of EPiC Series in Computing, pages 18–26. EasyChair, 2016.

[32] Masaki Waga. Falsification of cyber-physical systems with robustness-
guided black-box checking. In HSCC ’20: 23rd ACM International
Conference on Hybrid Systems: Computation and Control, 2020, pages
11:1–11:13. ACM, 2020.

[33] Zhenya Zhang, Paolo Arcaini, and Ichiro Hasuo. Constraining coun-
terexamples in hybrid system falsification: Penalty-based approaches.
In NASA Formal Methods - 12th International Symposium, NFM 2020,
volume 12229 of Lecture Notes in Computer Science, pages 401–419.
Springer, 2020.


