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Abstract—In this work, we investigate the reach-avoid problem
of a class of time-varying analytic systems with disturbances
described by uncertain parameters. Firstly, by proposing the
concepts of maximal and minimal reachable sets, we connect the
avoidability and reachability with maximal and minimal reach-
able sets respectively. Then, for a given disturbance parameter,
we introduce the evolution function for exactly describing the
reachable set, and find a series representation of this evolution
function with its Lie derivatives, which can also be regarded as a
series function w.r.t. the uncertain parameter. Afterward, based
on the partial sums of this series, over- and under-approximations
of evolution function are constructed, which can be realized
by interval arithmetics with designated precision. Further, we
propose sufficient conditions for avoidability and reachability
and design a numerical quantifier elimination based algorithm to
verify these conditions; moreover, we improve the algorithm with
a time-splitting technique. Finally, we implement the algorithm
and use some benchmarks with comparisons to show that our
methodology is both efficient and promising.

Index Terms—Reachable set; Evolution function; Parametric
disturbances; Reach-avoid verification.

I. INTRODUCTION

Reach-avoid problem is a crucial issue in various realistic
applications. It usually involves rigorously proving that a
dynamical system, subject to initial conditions and uncertain
disturbances, will eventually reach a region of the state-space
while avoiding some unsafe set of states. Verification of real-
world dynamical systems, such as autonomous cars [1] and
unmanned aerial vehicles [2], is challenging for many rea-
sons. First, all possible system behaviors, which might be an
uncountable number of trajectories due to uncountable initial
states, must be accounted for. This makes most simulation-
based approaches insufficient, and thus formal methods are
needed. Second, many practical systems evolve with complex
nonlinear dynamics and even jumps, and are usually addition-
ally affected by unknown but bounded uncertainties [3]. Final-
ly, these systems often have high-dimensional state spaces [4],
which is perhaps the most difficult challenge of all.

In this paper, we investigate the reach-avoid problem of
a class of time-varying analytic systems with disturbances
described by uncertain parameters. Specifically, we first con-
nect the notion of the reachable set of systems with given
disturbance parameters to the notions of minimal and maximal
reachable sets, which were also introduced in [5], [6], [7].
Then, we introduce our reach-avoid problem of verifying
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whether the system can cover the target set while avoiding
the obstacle set, which comes from the motivation to simul-
taneously and completely destroy the military targets while
avoiding infrastructures and even interceptions. Note that our
reach-avoid problem is defined as sweep-avoid property in [8]
and different from most of the studies [9], [10], which consider
whether the reachable set can be a subset of the target set
while avoiding the obstacle set; moreover, our obstacle set and
target set can be time-varying. Afterward, inspired by [11],
we introduce the evolution function for exactly describing the
reachable set with given parameter and find a series represen-
tation of the evolution function with its Lie derivatives, which
can also be regarded as a series function w.r.t. the uncertain
parameter. Using interval arithmetics, the remainder of partial
sums for the series representation can be consecutively esti-
mated, and if one remainder satisfies the designated precision,
we can build over- and under-approximations with the range of
this remainder and the corresponding partial sum. Moreover,
based on algebraic representations for over-approximations of
the maximal reachable set and under-approximations of the
minimal reachable set, we propose sufficient conditions for
avoidability and reachability, and design an algorithm based
on numerical quantifier elimination [12] for verifying these
conditions. We also improve the algorithm with time-splitting
technique and the corresponding simplification procedure.
Finally, five benchmarks, including non-polynomial systems
and time-varying obstacle set, are presented to show the per-
formance of our computational methodology with comparisons
to CORA [13] and Flow* [14]; especially, we also compare
our method with the method from [8] for Example 2.

The contributions of this paper can be summarized as:

1. We introduce the evolution function for the system with
given disturbance parameter, whose Taylor expansion
w.r.t. time can be used to exactly describe the reachable
set, and connect it to the concepts of maximal and
minimal reachable set of the uncertain system.

2. By using partial sums of the series expansion of evolution
function, we provide a remainder estimation (RE) based
methodology to obtain over- and under-approximations of
evolution function. In this way, we can handle systems
with rational and even trigonometric functions.

3. We design a numerical quantifier elimination based
method for verifying the reach-avoid problem, which can
handle time-varying obstacle set and target set (see Exam-



ple 3). In addition, if the system is robustly (un)avoidable
and (un)reachable, our algorithm can definitely terminate
with “true(false)”.

Related Work

Reachability analysis, which involves computing reachable
sets, plays a fundamental role in reach-avoid verification of
systems. Since the exact reachable sets are in general very
hard to be obtained for nonlinear systems, over- and under-
approximations are often computed for reach-avoid verifica-
tion. During recent two decades, numerous methods have
been proposed to over-approximate reachable sets [15], [16],
[17], [18] and some methods have been proposed for under-
approximations [19], [20], [21]. These methods often use
Lagrangian method [22], [23], which follows the flow of
system, or Eulerian method [24], which models the dynamics
of system by looking at how it flows through fixed sets.

The Lagrangian methods generally use various set repre-
sentations to compute the approximations of reachable set,
such as zonotopes [25], polyhedra [26], sub-polyhedral [27]
and ellipsoids [28]. These methods have also been applied
to deal with a variety of uncertain dynamical systems. For
example, based on ellipsoidal calculus, [29] studies the el-
lipsoidal estimates of reachable sets of the control systems
which contain quadratic type of nonlinearities and uncertain
matrix parameters; and [30] first uses mean-value extensions
for computing under-approximations of ranges of vector fields
under adversarial uncertainties with boxes, and then applies
this box based method to under-approximate robust reachable
sets of dynamical systems under time-varying uncertainties.
Moreover, some of these methods have been further extended
to deal with delay differential equations, for example, [31]
proposes a scheme to compute over- and under- approximating
flowpipes for delay differential equations with uncertain initial
states and parameters, and [32] explores reachable set compu-
tation for a class of delay differential equations featuring a
local homeomorphism property.

The Eulerian methods, generally based on the Hamilton-
Jacobi equation [33], [34], are known to be more expressive to
solve generalized reachability problems, and can be applied to
handle differential games [35]. While Hamilton-Jacobi reach-
ability is applicable to many small practical systems, the curse
of dimensionality prevents its direct application to many larger
systems. Fortunately, certain significant leaps have been made
recently in overcoming this challenge, for example, [4] pro-
poses a technique that decomposes the dynamics of a general
class of nonlinear systems into subsystems, and [36] proposes
to simplify system dynamics by treating state variables as
disturbances. It is noteworthy that the Taylor method [15],
[17], [19], as a typical Eulerian and efficient method, can be
transformed into a Lagrangian one.

The above Lagrangian methods are mainly used for safety
verification (dually, avoidability verification) in the literature,
although they can also be used for set-based estimation,
invariant set computation, controller synthesis, and so on [37].
For example, [38] uses ellipsoidal and support vector set rep-

resentations to synthesize permissive safety preserving control
laws for linear systems of larger state dimension; [7] uses
an approximation based on ellipsoidal techniques to study
the continual reachability set, and [39] further generalizes
this approximation to characterize robust reachable sets or
viability kernels and uses them to prove safety/viability of the
system. Meanwhile, some of the above Eulerian methods have
also been used for reach-avoid verification. For example, [40]
proposes a set-boundary based method to verify reach-avoid
problem of non-linear systems with parametric uncertainty
under the assumption that the initial set is a compact set; [41]
proposes a modified Hamilton-Jacobi equation in the form of a
double-obstacle variational inequality, and proves that the zero
sub-level set of its viscosity solution characterizes the capture
basin for the target under the state constraints.

II. PROBLEM DESCRIPTION

In this paper, we consider a class of time-varying analytic
systems with disturbances described by uncertain parameters,
i.e., systems of the form:

ẋ = f(x, t,u), x ∈ D,u ∈
m∏
i=1

[ai, bi], t ∈ [t0−T, t0+T ], (1)

where x is an n-dimensional vector, f(x, t,u) : Rn × R ×
Rm → Rn is an analytic real function, D ⊆ Rn is a domain,
u is an m-dimensional bounded disturbance parameter defined
in U =

∏m
i=1[ai, bi] ⊆ Rm, t is the time variable and the time

interval [t0−T, t0+T ] ⊆ R with T > 0 is well-defined. Letting
X0 ⊆ D be an initial set, the solution of system (1) with given
disturbance parameter u0 ∈ U starting from the initial state
x0 ∈ X0 and initial instant t0 is denoted as φu0(t; (x0, t0)).

For system (1), we define the reachable set as follows.

Definition 1. For system (1) with given disturbance parameter
u0 ∈ U, we define the reachable set from the initial set X0

with the initial instant t0 at instant t ∈ [t0, t0 + T ] as

Reachu0,t
f ,(X0,t0) = {x ∈ D | ∃x0 ∈ X0,x = φu0(t; (x0, t0))}.

Moreover, the reachable set from the initial set X0 with the
initial instant t0 within time interval [t0, t0 + T ] is defined as

Reachu0,T
f ,(X0,t0) =

⋃
t∈[t0,t0+T ]

Reachu0,t
f ,(X0,t0).

We also define Reachu0,−T
f ,(X0,t0) =

⋃
t∈[t0−T,t0] Reach

u0,t
f ,(X0,t0).

Since we cannot specify the disturbance u0, following [5],
we further define maximum and minimum reachable sets of
uncertain system (1) as follows.

Definition 2. For given system (1), the maximal reachable
set Reachmax t

f ,(X0,t0) from the initial set X0 with initial time t0
at instant t is defined as

Reachmax t
f ,(X0,t0) = {x ∈ D | ∃u ∈ U ,∃x0 ∈ X0,x = φu(t; (x0, t0))};

the minimal reachable set Reachmin t
f ,(X0,t0) from X0 with initial

time t0 at instant t is defined as

Reachmin t
f ,(X0,t0) = {x ∈ D | ∀u ∈ U ,∃x0 ∈ X0,x = φu(t; (x0, t0))}.



Moreover, the maximal reachable sets from X0 within
time interval [t0, t0 + T ] is defined as: Reachmax T

f ,(X0,t0) =⋃
t∈[t0,t0+T ]Reach

max t
f ,(X0,t0). Similarly, we can also define:

Reachmax −Tf ,(X0,t0) =
⋃
t∈[t0−T,t0]Reach

max t
f ,(X0,t0).

It is clear that Reachmax t
f ,(X0,t0) =

⋃
u0∈U Reach

u0,t
f ,(X0,t0) and

Reachmin t
f ,(X0,t0) =

⋂
u0∈U Reach

u0,t
f ,(X0,t0). Based on Defini-

tion 2, we propose the reach-avoid problem for uncertain
system (1) with given target set RAT and obstacle set RAO.

Definition 3. For system (1) with given initial set X0 and
initial time t0, the obstacle set RAO is avoidable within time
interval [t0, t0 + T ] iff

Reachmax T
f ,(X0,t0)

⋂
RAO = ∅;

and the target set RAT is reachable within time interval
[t0, t0 + T ] iff there exists a t ∈ [t0, t0 + T ] such that

Reachmin t
f ,(X0,t0) ⊇ RAT .

Remark 1. If the obstacle set RAO(t) and target set RAT (t)
are time-varying, the obstacles set RAO(t) is avoidable within
time interval [t0, t0 + T ] iff the constraint ∀t ∈ [t0, t0 +
T ][Reachmax t

f ,(X0,t0)

⋂
RAO(t) = ∅] holds; and the target set

RAT (t) is reachable within time interval [t0, t0 + T ] iff the
constraint ∃t ∈ [t0, t0 + T ][Reachmin t

f ,(X0,t0) ⊇ RAT (t)] holds.
However, it is necessary to mention that we may encounter
the case that there exists a t such that Reachmin t

f ,(X0,t0) = ∅.

Obviously, our reach-avoid problem is different from the
most studies [40], [9], [10] since we consider covering all of
the target set while avoiding the obstacle set, which is naturally
useful in path-planning problems [8], e.g., designing paths for
simultaneously and completely destroying the military targets
while avoiding infrastructures and even interceptions. The key
issue for verifying the reach-avoid problem is to compute
Reachmax T

f ,(X0,t0) and Reachmin t
f ,(X0,t0). By Definitions 1 and 2,

the computation of Reachmax T
f ,(X0,t0) and Reachmin t

f ,(X0,t0) can
be converted to finding Reachu0,t

f ,(X0,t0) for all u0 ∈ U and
t ∈ [t0, t0+T ]. Inspired by [11], by using the analytic solution
of the system, we introduce the evolution function (EF) as
follows, to characterize Reachu0,t

f ,(X0,t0).

Definition 4. For an analytic function g : Rn → R and a
system (1) with given parameter u0, the evolution function of
the system with g(·) is defined as

Evof ,g,u0(x, t) = g(φu0(t0; (x, t))),

where (x, t) ∈ D× [t0, t0 + T ].

Since f(x, t,u0) in (1) is analytic and thus local Lipschitz
w.r.t. x, then based on Definition 4, we have that for all
(x, t) ∈ D× [t0, t0 + T ],

Evof ,g,u0(φu0(t; (x0, t0)), t) = g(x0), (2)

indicating that Evof ,g,u0(φu0(t; (x0, t0)), t) does not change
with t for all x0 ∈ D. An important proposition, connecting

evolution function and reachable set, will be given directly
after introducing sub-zero level set.

Definition 5. The sub-zero level set µ(v(·)) of function v :
Rn → R is defined as:

µ(v(·)) = {x ∈ Rn | v(x) ≤ 0}.

Remark 2. Throughout this paper, if the initial set X0 can
be represented by a sub-zero level set of a function g(·), i.e.
X0 = µ(g), we use Reachu0,t

f ,(g,t0) and Reachu0,T
f ,(g,t0) as aliases

of Reachu0,t
f ,(µ(g),t0) and Reachu0,T

f ,(µ(g),t0), respectively.

Proposition 1. For an analytic function g : Rn → R and an
uncertain system (1) with given parameter u0 ∈ U , we have
Reachu0,t

f ,(g,t0) = µ(Evof ,g,u0(x, t)).

Proof. According to (2), Evof ,g,u0(φu0(t; (x0, t0)), t) ≤ 0⇔
g(x0) ≤ 0, and thus Proposition 1 can be easily obtained.

Proposition 1 shows that the computation of reachable set
of system (1) with given parameter u0 can be converted to
computations of evolution function of the system defined by
its analytic solution and the corresponding sub-zero level set.

III. OVER- AND UNDER- APPROXIMATIONS OF
REACHABLE SETS

From Proposition 1, for computing the reachable set, we
can alternatively compute the evolution function defined by the
analytic solution of the system. However, the analytic solution
is hard to get in general. Instead of computing evolution func-
tion by directly using the analytic solution, following the work
in [11], we in this section present an explicit series representa-
tion of the evolution function using its Lie derivatives, and then
introduce a methodology based on estimating the remainders
of partial sums of the series representation to compute over-
and under-approximations of evolution functions, arriving at
over- and under-approximations of reachable sets. For this
purpose, we first define over- and under- approximations of
set and function as follows.

Definition 6. For sets S1 and S2, S1 is called as over- (under-,
resp.) approximation of S2 iff S1 ⊇ (⊆)S2. Moreover, for two
n-dimensional scalar functions f1 (x) and f2 (x) and a set S,
f1 (x) is called as over- (under-, resp.) approximation of f2 (x)
over S if f1 (x) ≤ (≥)f2 (x), ∀x ∈ S.

A. t-expansion of Evolution Function

Recall that for a vector field c(x) defined from Rn to
Rn, the Lie derivative of function h : Rn → R w.r.t.
c(x) is given by Lc(h) = ∂h(x)

∂x · c(x). Then, the ith-
order Lie derivative of h(·) w.r.t. c(x), written as L(i)

c (h),
is defined as L(0)

c (h) = h and L(i)
c (h) = Lc(L(i−1)

c (h))
for i ≥ 1. Moreover, by Definition 4, for Evof ,g,u0(x, t),
where (x, t) ∈ D × [t0, t0 + T ], its first-order derivative
Evo

′

f ,g,u0
(x, t) w.r.t. t is ∂g(x)

∂x |φu0 (t0;(x,t)) · (−f(x, t,u0))

since ∂φu0 (t0;(x,t))

∂t = −f(x, t,u0), which indicates that

Evo
′

f ,g,u0
(x, t) =

∂g(x)

∂x
· (−f(x, t,u0)) = L−f (g).



Similarly we can compute the (n + 1)th-order derivative of
Evof ,g,u0(x, t) (n ≥ 1) as

Evo
(n+1)
f ,g,u0

(x, t) =
dEvo

(n)
f ,g,u0

(x, t)

dt

=
∂Evo

(n)
f ,g,u0

(x, t)

∂x
· f(x, t,u0) +

∂Evo
(n)
f ,g,u0

(x, t)

∂t
,

arriving at Evo
(n+1)
f ,g,u0

(x0, t0) = L(n+1)
−f (g) since

Evof ,g,u0(x0, t0) = g(x0). Thus the Taylor expansion
w.r.t. t at t = t0 (namely the t-expansion) of Evof ,g,u0(x, t)
can be expressed as

Evof ,g,u0(x, t) =

+∞∑
i=0

Evo
(i)
f ,g,u0

(x0, t0)
(t− t0)i

i!

=

+∞∑
i=0

Li−f (g)
(t− t0)i

i!
.

(3)

Equivalently, we can write (3) as

Evof ,g,u0(x, t) =

+∞∑
i=0

Mi
f ,g,u0

(x, t)

i!
(−t+ t0)i, (4)

where for all (x, t) ∈ D× [t0, t0 +T ],Mi
f ,g,u0

(x, t) is defined
inductively as M0

f ,g,u0
(x, t) = g(x) and Mi+1

f ,g,u0
(x, t) =

∂Mi
f,g,u0

(x,t)

∂x ·f(x, t,u0)+
∂Mi

f,g,u0
(x,t)

∂t . Moreover, we denote
EvoN

f ,g,u0
(x, t) as its N th partial sum of t-expansion, i.e.,

EvoN
f ,g,u0

(x, t) ≡
N∑
i=0

(−t+ t0)i

i!
Mi

f ,g,u0
(x, t). (5)

B. RE based Methodology for Approximations

In this subsection, we provide a remainder estimation based
methodology to compute over- and under-approximations of
reachable sets. For this, we introduce the following theorem.

Theorem 1. For a system (1) with given parameter u0 ∈ U ,
an analytic function g : Rn → R, and an arbitrary but fixed
N ∈ N, we have that for all (x, t) ∈ D× [t0, T + t0],

Evof ,g,u0(x, t) = EvoN
f ,g,u0

(x, t) + RemN
f ,g,u0

(x, t), (6)

where RemN
f ,g,u0

(x, t) is defined to be∫ t−t0
0

(t−t0−r)N
N ! (−1)N+1MN+1

f ,g,u0
(φu0(t− r; (x, t)), t− r)dr.

Proof. For given u0 ∈ U and arbitrary N ∈ N, by considering
the derivative of EvoN

f ,g,u0
(φu0(t; (x0, t0)), t), where x0 ∈ D

and t ∈ [t0, t0 +T ], we have that:
dEvoN

f,g,u0
(φu0 (t;(x0,t0)),t)

dt =
(−t+t0)N

N ! MN+1
f ,g,u0

(φu0(t; (x0, t0)), t). Thus, for any (x0, t) ∈
D× [t0, t0 + T ],

EvoN
f ,g,u0

(φu0(t; (x0, t0)), t)

=EvoN
f ,g,u0

(φu0(t0; (x0, t0)), t0)

+

∫ t

t0

(−s+ t0)N

N !
MN+1

f ,g,u0
(φu0(s; (x0, t0)), s)ds

=Evof ,g,u0(x, t)− RemN
f ,g,u0

(φu0(t; (x0, t0)), t).

Therefore, we completed the proof of the theorem.

Moreover, for all (x, t,u) ∈ D× [t0, T + t0]×U, where u
is the uncertain parameter, according to Equations (4) and (5),
we can construct a function TrN (x, t,u) as

TrN (x, t,u) =

N∑
i=0

(−t+ t0)i

(i)!
M i(x, t,u), (7)

where for all (x, t,u) ∈ D × [t0, T + t0] × U, M i(x, t,u) is
defined inductively as M 0 (x, t,u) = g(x) and M i(x, t,u) =
dM i−1 (x,t,u)

dt . Since u satisfies du
dt = 0, for a system (1) with

any given parameter u0 ∈ U and N ∈ N, we have that
MN (x, t,u0) =MN

f ,g,u0
(x, t), i.e.

TrN (x, t,u0) = EvoN
f ,g,u0

(x, t). (8)

Clearly, according to equations (7) and (8), EvoN
f ,g,u(x, t) can

be regarded as a function of the uncertain parameter u, and
thus, according to equation (4), Evof ,g,u(x, t) can also be
regarded as a series function of the uncertain parameter u.

Due to Definition 6, to arrive at over- and under- ap-
proximations of evolution function, we need to fix S first.
Here, since we consider the reachable set with all u ∈
U and their over- and under-approximations, S should be
a bound of the maximal reachable set with time interval
[t0, T + t0]. Thus, due to Theorem 1 and Equation (8), once
we can find the upper and lower bounds of MN+1 (x, t,u),
then we can estimate RemN

f ,g,u0
(x, t). However, for bound-

ing MN+1 (φu0(t − r; (x, t)), t − r,u0), for all u0 ∈ U,
φu0(t− r; (x, t)) is required. Since x ∈ S and r ∈ [0, t− t0],
then y = φu0(t − r; (x, t)) ∈ Reachu0,t−r

f ,(S,T+t0) and thus
for all u0 ∈ U, y ∈ Reachmax −Tf ,(S,T+t0). So the backward
reachable set is additionally required. Correspondingly, we
have the following theorem for describing the over- and under-
approximations of evolution function.

Theorem 2. For given uncertain system (1) and analytic
function g : Rn → R, assume that S and S

′
are two

compact sets of states such that D ⊇ S ⊇ Reachmax T
f ,(g,t0) and

S
′ ⊇ Reachmax −Tf ,(S,T+t0). For given degree N ∈ N, if we can find

two real numbers LN+1 and UN+1, satisfying ∀(x, t,u) ∈
S
′ × [t0, t0 + T ] × U, LN+1 ≤ (−1)N+1MN+1 (x, t,u) ≤

UN+1 , then for all u ∈ U, we have that

1. Over(x, t,u) = TrN (x, t,u) + LN+1
(t−t0)N+1

(N+1)! /

Under(x, t,u) = TrN (x, t,u) + UN+1
(t−t0)N+1

(N+1)! is
over- / under- approximation of Evof ,g,u(x, t) over S;

2. the precision for the approximations are bounded by
(UN+1 − LN+1) (t−t0)N+1

(N+1)! .

Proof. To find over- and under-approximations of evolution
function over S, we need to estimate upper and lower bounds
of RemN

f ,g,u(x, t). According to the hypothesis of LN+1 and
UN+1, for all (y, r,u) ∈ S

′ × [0, t − t0] × U, LN+1 ≤
(−1)N+1MN+1 (y, t − r,u) ≤ UN+1, which implies that



for any u0 ∈ U, LN+1
(t−t0)N+1

(N+1)! ≤ RemN
f ,g,u0

(x, t) ≤
UN+1

(t−t0)N+1

(N+1)! . Together with Equations (6) and (8), we have

TrN (x, t,u) + LN+1
(t− t0)N+1

(N + 1)!
≤ Evof ,g,u(x, t)

≤ TrN (x, t,u) + UN+1
(t− t0)N+1

(N + 1)!

(9)

for all (x, t,u) ∈ S × [t0, t0 + T ] ∈ U, which is the result 1.
Sequentially, from (9) we can immediately have that

Under(x, t,u)− Over(x, t,u) = (UN+1 − LN+1) (t−t0)N+1

(N+1)!

for all (x, t) ∈ S× [t0, t0 +T ], and thus the result 2 holds.

Now, let us consider the Hausdorff metric between a reach-
able set and its over- or under-approximations theoretically
generated by Theorem 2.

Definition 7. The Hausdorff metric between sets S1 and S2

is defined as H (S1, S2) = max(ξ(S1, S2), ξ(S2, S1)), where
ξ(S1, S2) = maxx∈S1

miny∈S2
‖x− y‖.

From the proof of Theorem 2, it is obvious that the
Hausdorff metric between µ(Evof ,g,u(·, t)) with either over-
or under-approximation generated by Theorem 2 is bounded
by H (µ(Over(·, t,u)), µ(Under(·, t,u))). Then, similar to
Proposition 3 in [42], we have the following theorem.

Theorem 3. For a system (1) with given u0, an analyt-
ic but nonconstant function g : Rn → R, and sets S
and S

′
satisfying D ⊇ S ⊇ Reachmax T

f ,(g,t0) and S
′ ⊇

Reachmax −Tf ,(S,T+t0), suppose that MN+1 (x, t,u0) = o( N !
TN

)

uniformly in S
′
. Moreover, for arbitrary but fixed r >

0, let x̄t = maxx∈{x|Evof,g,u(x,t)=0} ‖
∂Evof,g,u(x,t)

∂x ‖,
εt = maxx∈{x|Evof,g,u(x,t)=0}minl∈[0,r]

1
T Evof ,g,u(x +

l
x̄t

∂Evof,g,u(x,t)
∂x , t) and ε∗ = mint∈[0,T ] εt. Then, for any

ε ∈ [0, ε∗T ], there exists a degree N with the corresponding
Over(x, t,u0) and Under(x, t,u0) defined by Theorem 2
such that for all (x, t) ∈ S × [t0, t0 + T ], |Under(x, t,u0)−
Over(x, t,u0)| ≤ ε, and

H (µ(Over(·, t,u0)), µ(Under(·, t,u0))) ≤ r.

C. Algorithm for Approximations of Reachable Set

For given uncertain system (1), analytic g(·), time interval
[t0, t0 + T ] and designated precision ε1, we in this subsection
attempt to use Theorem 2 to design an algorithm for computing
over- and under-approximations of reachable sets for all u ∈
U. According to Theorem 2, we need to determine the S and
S′ first. For this, starting from a box B containing the initial
set µ(g), we call CORA-2021 to get an over-approximation
(named as Bound) of the maximal reachable set as S, and
continue to call CORA to get an over-approximation (named
as Interval) of the backward maximal reachable set of
S as S

′
. CORA [43] can compute the over-approximation

of reachable set within given time-interval and return the
resulting boxes, which is really suitable for our purpose.
Then, according to this S′, we can iteratively increase the
degree N of TrN (x, t,u) and estimate the lower bound

Algorithm 1
Input: f(x, t,u), g(x), B, t0, T , ε1, [ai, bi] ;
Output: Over(x, t,u), Under(x, t,u), and Bound.

1: Call CORA(f, B, T ) to find Bound as S;
2: Call CORA(f, Bound, −T ) to find Interval as S′;
3: M (x, t,u)⇐ g(x); Tr(x, t,u)⇐ g(x); N ⇐ 0 ;
4: while not U − L ≤ ε1·(N+1)!

TN+1 do
5: M (x, t,u)⇐ ∂M (x,t,u)

∂x · f(x, t,u) + ∂M (x,t,u)
∂t ;

6: Tr(x, t,u) ⇐ Tr(x, t,u) + (−t+t0)N+1

(N+1)! M (x, t,u);
N ⇐ N + 1;

7: Compute L and U for M (x, t,u) in Interval ×
[t0, t0 + T ]×

∏m
i=1[ai, bi];

8: Let Tailo(t) = L (t−t0)N+1

(N+1)! and Tailu(t) = U (t−t0)N+1

(N+1)! ;
9: Over(x, t,u)⇐ Tr(x, t,u)+Tailo(t); Under(x, t,u)⇐

Tr(x, t,u) + Tailu(t) ;
10: return Over(x, t,u),Under(x, t,u),Bound.

LN+1 and upper bound UN+1 of (−1)N+1MN+1 (x, t,u) in
S
′ × [t0, t0 + T ]× U with interval arithmetic in CORA until

UN+1−LN+1 ≤ ε1·(N+1)!
TN+1 , and then generate over- and under-

approximations of Evof ,g,u(x, t) with all u ∈ U according to
Theorem 2 with the designated precision ε1. Note that if for all
u ∈ U, MN+1 (x, t,u) = o( N !

TN
) uniformly in S

′
, then for any

ε1 > 0, there exists an N , such that LN+1 and UN+1 estimated
by CORA can satisfy that UN+1−LN+1 ≤ ε1·(N+1)!

TN+1 . Conse-
quently, we have Algorithm 1 to simultaneously compute over-
and under-approximations of evolution function with given
precision ε1.

Moreover, according to Theorem 3, for arbitrary but fixed
r > 0, we can find ε1 and the corresponding Over(x, t,u)
and Under(x, t,u) with |Over(x, t,u) − Under(x, t,u)| ≤
ε1 such that H (µ(Over(·, t,u)), µ(Under(·, t,u))) ≤ r. So,
we can make the Hausdorff metric between over- and under-
approximations of the reachable set arbitrarily small since the
precision ε1 is user-provided.

IV. AVOIDANCE-REACHABILITY VERIFICATION

In this section, we will introduce a methodology based on
over- and under-approximations of the reachable set to verify
our reach-avoid problem. In detail, we in Subsection IV-A
propose a numerical quantifier elimination based verification
approach; further, we in Subsection IV-B use the time-splitting
technique to improve the verification approach.

A. Numerical Quantifier Elimination based Verification

Based on Theorem 2, Proposition 1, and Algorithm 1, {x ∈
S | Over(x, t,u) ≤ 0} and {x ∈ S | Under(x, t,u) ≤ 0} are
over- and under- approximations of Reachu,t

f ,(g,t0) with the des-
ignated precision ε1 respectively, where S is the output Bound
of Algorithm 1. Thus, we can obtain sufficient conditions for
avoidability and reachability in [t0, t0 + T ] as follows.

Theorem 4. For given time-varying obstacle set RAO =
{x | O(x, t) ≤ 0} and time-varying target set RAT = {x |
T (x, t) ≤ 0} and the output of Algorithm 1,



1. If the constraint ∀t ∈ [t0, t0 + T ],∀u ∈∏m
i=1[ai, bi],∀x ∈ S, [Over(x, t,u) ≤ 0 ⇒ O(x, t) >

0] holds, then the obstacle set RAO is avoidable.
2. If the constraint ∃t ∈ [t0, t0 + T ],∀u ∈∏m

i=1[ai, bi],∀x ∈ S, [T (x, t) ≤ 0⇒ Under(x, t,u) ≤
0] holds, then the target set RAT is reachable.

Then, for given system (1), initial set X0 = µ(g), time
interval [0, T ], obstacle setO(x, t), and target setT (x, t), ac-
cording to Theorem 4, we can design an algorithm for reach-
avoid verification as follows. We first call Algorithm 1 with the
precision ε1 for Over(x, t,u), Under(x, t,u), and Bound,
and let Bound be the box S used for Theorem 4. Then
we use RSolver [12] with specified error bound ε2 to deal
with the constraints in Theorem 4. Note that RSolver can
solve quantified constraints, that is, formulae in the first order
predicate language over the reals, and returns ‘true’, ‘false’,
and ‘unknown’ with corresponding intervals according to a
user-provided error bound. Further, we process the outputs
of RSolver as follows: if the interval for ‘false’ is not
empty, we terminate the loop and return ‘the system may be
unavoidable/unreachable’; if the interval for ‘false’ is empty
but the interval for ‘unknown’ is not empty, implying that the
precision is not satisfied, we reduce both ε1 and ε2 and repeat
the previous steps; if the output of RSolver is only ‘true’, we
terminate the algorithm and return ‘the obstacle/target set is
avoidable/reachable’.

Consequently we design Algorithm 2 to simultaneously
verify reachability and avoidability of the system. Therein, to
avoid confusion, we use ε1 and ε2 for avoidable verification,
but ε

′

1 and ε
′

2 for reachable verification.

Remark 3. It is noteworthy that if MN+1 (x, t,u) =
o( N !

TN
) uniformly in S

′
and the system is robustly avoid-

able, there must exist a number r > 0 satisfying that
minx∈Reachmax t

f,(g,t0)
miny∈µ(O(·,t)) ‖x,y‖2 ≥ r, ∀t ∈ [0, T ].

Moreover, for this r, according to Theorem 3 and Algorithm 2,
we can certainly find ε1, such that for any given u0 ∈ U, the
corresponding Over(x, t,u0) and Under(x, t,u0) satisfy that

H (µ(Over(·, t,u0)), µ(Under(·, t,u0))) ≤ r/2,

implying that H (µ(Over(·, t,u0)),Reachu0,T
f ,(g,t0)) ≤ r/2;

meanwhile, we can find ε2, such that ε2 ≤ r/2. Thus, if
MN+1

f ,g,u(x, t) = o( N !
TN

) uniformly in S
′

and the system is
robustly avoidable, the return of RSolver with (Over(x, t,u),
O(x, t), ε2) for the avoidable condition in Theorem 4 will be
definitely ‘true’. Similarly, if the system is robustly reachable,
the return of RSolver with (Under(x, t,u), T (x, t), ε2) for
the avoidable condition will be definitely ‘true’. As a result,
if for all u ∈ U, MN+1

f ,g,u(x, t) = o( N !
TN

) uniformly in S
′

and
the system is robustly avoidable and reachable, Algorithm 2
can definitely terminate with ‘true’.

Remark 4. For given time-varying obstacle set RAO =
{O(x, t) ≤ 0} and target set RAT = {T (x, t) ≤ 0},
if the constraint ∃t ∈ [t0, t0 + T ],∃u ∈ U ,∃x ∈
S, [Under(x, t,u) ≤ 0 ⇒ O(x, t) ≤ 0] holds, then the

Algorithm 2
Input: f(x, t,u), g(x), B, T , ε1, ε2, U , O(x, t) , T (x, t);
Output: ‘Avoidable’, ‘Reachable’.

1: Initialize Avo ⇐ ‘unk’; Rch ⇐ ‘unk’; ε
′

1 ⇐ ε1; ε
′

2 ⇐ ε2;
2: while Avo=‘unk’ do
3: Call Algo. 1 with ε1 for Over(x, t,u) and Bound;
4: Call RSolver with (T , Over(x, t,u), O(x), U , Bound,

ε2) for the avoidable condition in Theorem 4;
5: if the interval for ‘false’ 6= ∅ then
6: Avo ⇐ 0
7: else if the interval for ‘unknown’ 6= ∅ then
8: ε1 ⇐ 0.1ε1; ε2 ⇐ 0.5ε2;
9: else

10: Avo ⇐ 1;
11: while Rch=‘unk’ do
12: Call Algo. 1 with ε

′

1 for Under(x, t,u) and Bound;
13: Call RSolver with (T , Under(x, t,u), T (x), U ,

Bound, ε
′

2) for the reachable condition in Theorem 4;
14: if the interval for ‘false’ 6= ∅ then
15: Rch ⇐ 0
16: else if the interval for ‘unknown’ 6= ∅ then
17: ε1 ⇐ 0.1ε1; ε2 ⇐ 0.5ε2;
18: else
19: Rch ⇐ 1;
20: if Avo = 1

∧
Rch = 1 then

21: return ’Avoidable’ and ’Reachable’.

obstacle set RAO is unavoidable; if the constraint ∀t ∈
[t0, t0 +T ],∃u ∈ U ,∃x ∈ S, [Over(x, t,u) ≥ 0⇒ T (x, t) <
0] holds, then the target set RAT is unreachable. Clearly, we
can use a method similar to Algorithm 2 for the falsification
of reach-avoid problem.

B. Improvements of Algorithm 2

Note that for large time intervals, Algorithm 1 usually
requires a higher degree N and thus a larger number of terms
to ensure accuracy, which makes it hard for RSolver to find
solutions. Hence, for performance improvement, we modify
Algorithm 2 to Algorithm 3 with the time-splitting technique,
separating the given time interval [0, T ] into K parts with
equal length ∆T = T/K. One observation is that for small
time bound ∆T , EvoN

f ,g,u(x, t) can approximate Evof ,g,u(x, t)
well in low degree N, so that the computational complexity
of RSolver can be considerably reduced; meanwhile, the
reachable set can stay close to the initial set so that the
corresponding S may be small, making it easier for RSolver
to find solutions. Correspondingly, different from Lines 1–2
in Algorithm 1, Lines 2–3 in Algorithm 3 successively call
CORA to get an enclosure for the reachable set in each
time segment based on the previous enclosure, denoted as
Bound, and Lines 5–6 in Algorithm 3 inversely call CORA
for each time segment to calculate the over-approximation of
the backward reachable set of previous over-approximation,
denoted as Interval. Here Bound and Interval satisfy
that: Reachmax ∆T

f ,Bound(i−1) ⊆ Bound(i) for all 2 ≤ i ≤ K,



Algorithm 3
Input: f(x, t,u), g(x), B, ∆T , K, r, ∆ε1, ε2, U , O(x, t),
T (x, t).
Output: ‘Avoidable’, ‘Reachable’.

1: Initialize Init(x, t,u) ⇐ g(x); Tail
′

o ⇐ 0; Tail
′

u ⇐ 0;
Avo ⇐ ‘unk’; Rch ⇐ ‘unk’;

2: for i=1:K do
3: Call CORA(f , B, ∆T ) to update B, Bound(i)⇐ B;
4: Interval(K + 1)⇐ Bound(K);
5: for i=K:1 do
6: Call CORA(f , B, −∆T ) to update B,

Interval(j)⇐ B;
7: for i = 1 : K do
8: Call Lines 3–8 in Algo. 1 with (Init(x, t,u), ∆T ,

(i−1)∆T , Interval(i), r∆ε1) to obtain Tr(x, t,u),
Tailo and Tailu ;

9: Simplify Tr(x, t,u) with precision εi1 = (1−r)∆ε1
2 ;

10: Overi ⇐ Tr(x, t,u) +Tail
′

o − εi1 +Tailo ; Underi ⇐
Tr(x, t,u) + Tail

′

u + εi1 + Tailu ;

11: Tail
′

o ⇐ Tail
′

o −
(1−r)∆ε

2 + Tailo(i∆T ); Tail
′

u ⇐
Tailu + (1−r)∆ε

2 + Tailu(i∆T );
12: Init(x)⇐ Tr(x, i∆T,u);
13: Build piecewise over- and under- approximations function

Over := Overj (x, t,u), Under := Underj (x, t,u),
∀t ∈ [ j−1

K T, jKT], 1 ≤ j ≤ K;
14: for i=1:K do
15: while Avo = ‘unk; do
16: Call RSolver with ([(i−1)∆T, i∆T ], Over(i), O(x),

U , Bound(i), ε2) for the avoidable condition;
17: if the interval for ‘false’ 6= ∅ then
18: Avo ⇐ 0;
19: else if the interval for ‘unknown’ 6= ∅ then
20: ε1 ⇐ 0.1ε1; ε2 ⇐ 0.5ε2; Back to Line 7;
21: while Rch = ‘unk’; do
22: Call RSolver with ([(i − 1)∆T, i∆T ], Under(i),

T (x), U , Bound(i), ε2) for the reachable condition;
23: if the interval for ‘false’ = ∅ then
24: if the interval for ‘unknown’ = ∅ then
25: Rch ⇐ 1;
26: else
27: ε1 ⇐ 0.1ε1; ε2 ⇐ 0.5ε2; Back to Line 7;
28: if Avo 6= 0

∧
Rch = 1 then

29: return ’Avoidable’ and ’Reachable’

Bound(K) = Interval(K+1), and Reachmax −∆T
f ,Interval(i+1) ⊆

Interval(i) for all 1 ≤ i ≤ K. Note that for the ith segment,
the initial set is Xi−1 = µ(Tr(·,∆T,u)), Reachmax ∆T

f ,Xi−1
⊆

Bound(i) and Reachmax ∆T
−f ,Bound(i) ⊆ Interval(i); moreover,

Bound(i) and Interval(i) will be the enclosure S and
S
′

used for Theorem 2 respectively. Next, starting from
g(x), Line 8 in Algorithm 3 repeatedly calls Lines 3–8 in
Algorithm 1 for Tr(x, t,u), Tailo and Tailu in each time
segment. As a result, for each segment, Line 8 in Algorithm 3
returns approximations with precision r∆ε1. It is worth men-

tioning that during time-splitting, if we directly use the result
obtained in the previous iteration as the initial of the successive
iteration, the scale of Tr(x, t,u) will grow rapidly when the
iteration continues. As a remedy, we design a simplification
procedure, as shown in Line 9 in Algorithm 3, to reduce the
scale of the outputs from Algorithm 1 in each segment, reduc-
ing the computational complexity of the successive iteration
and sacrificing some precisions in the final over- and under-
approximations. Specifically, we firstly use interval arithmetics
to find upper bounds for the absolute values of all terms
in Tr(x, t,u) in S′ × [ j−1

K T, jKT] × U , and then sort these
upper bounds in ascending order; afterwards, we gather the
terms until the sum of the corresponding upper bounds of
the absolute values of the collected terms exceeds (1−r)∆ε1

2
and then remove the previous collected terms, sacrificing the
precision (1−r)∆ε1

2 . Finally, by adding − (1−r)∆ε1
2 / (1−r)∆ε1

2 to
the over/under approximation (see Lines 12-13), we can return
approximations with precision ε1.

Consequently, compared to Algorithm 2, Algorithm 3 can
work on a longer time bound with the help of the time-splitting
technique and guarantee the effectiveness of RSolver due to
the simplification procedure.

Remark 5. Naturally, we can extend our method to systems
with uncertain piecewise disturbances.

V. EXAMPLES WITH COMPARISONS AND DISCUSSIONS

In this section, we demonstrate our method with compar-
isons on five examples whose computations are all performed
on a Laptop 1.8GHz Intel Core i7 (4 cores) and 8Gb of RAM.
For all these examples, we set ε1 = 10−2 and ε2 = 0.03
as our initial precision for Algorithm 3. Some data of the
results are listed in Table I, and the figures of obtained
over/under-approximation are also shown. Note that due to
the uncountable assignments of the uncertain parameter u, it is
very difficult to get the image of the reachable set. Therefore,
by sampling certain u, we list part of the images to intuitively
show that our reach-avoid verification is correct. Therein,
the black/green lines represent the boundaries of the obsta-
cle/target set and the red/blue lines represent the boundaries
of over-/under- approximation of Reachu,t

f ,g . Moreover, for all
these five examples, we compare our method with CORA and
Flow* on the precision for over-approximations of maximal
reachable sets; especially, for Example 2, which has also been
used in [8], we additionally compare our method with the
method from [8] for both over-approximations of maximal
reachable sets and under-approximations of minimal reachable
sets. The results, given by CORA, Flow* and the method
from [8], are also listed. Therein, we set options.timeStep
= 0.05, options.zonotopeOrder = 10 and options.taylorTerms
= 5 in CORA, adaptive orders {min4,max16}, remainder
estimation 1e-4 and fixed steps 0.01 in Flow* and sampling-
time = 0.02, order = 3 in method from [8]. Note that, we do
not compare our method with CORA and Flow* for under-
approximations of minimal reachable sets since it is difficult to
adapt CORA-2021 and Flow*-2.1.0 for our systems; and we
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Fig. 1: Results of Example 1.

do not compare our method with the method from [8] for other
examples since it is also hard to adapt the method from [8] for
them. Moreover, for fair comparisons, we also experimented
with higher parameter settings for CORA-2021, Flow*-2.1.0,
and the method from [8] (see Tables II, III and IV).

Example 1. Consider a DC-DC boost converter system [44]:

ẋ = A(u)x + B(u),

where x(t) = [il(t), vc(t)], il(t) is the inductor current, vc(t)
is the capacitor voltage, u = [r0, vs] is the disturbance, and
A(u) and B(u) are described by

A(u) =
1

200r0 + 1

[−(220r0+1)
60 −40r0/3

100r0/7 −20/7

]
,B(u) =

[
vs/3

0

]
.

We set the initial set {(il , vc) | (il − 1)2 + (vc − 5)2 ≤ 0.04},
and assume that u ∈ [1, 5]× [0.8, 1.2]. Then, by Algorithm 3,
with the obstacles set RAO = {−(il − 0.9)2 ≤ −0.16}
and the target set RAT = {(il − 0.96)2 + (vc − 5.05)2 +
(t − 2)2 ≤ 0.022}, we can verify the system is avoid-
able and reachable within time interval [0, 2]. The obtained
over/under-approximations of reachable sets corresponding to
u = (3 ± 2, 1 ± 0.2) at t = 0, 0.2, . . . , 2 are shown in
Figure 1a, and we also show the target set, the obstacle set,
and the obtained over/under-approximation results at t = 2 in
Figure 1b.

The result given by CORA with initial set [0.8, 1.2] ×
[4.8, 5.2] is shown in Figure 1c and Flow* has no result
for adaptive orders {min4,max16} and fixed steps 0.01.
However, after resetting adaptive orders {min32,max64}
and fixed steps 0.001 in Flow*, the result given by Flow*
is shown in Figure 1d. From Figures 1a, 1c and 1d, we can
see that our result is comparable with CORA and Flow*.
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Fig. 2: Results of Example 2.

Example 2. Consider a PD-controller [8], [45], controlling
position x and velocity v of a car by adjusting its acceleration
depending on the current distance to a reference position pr:[

ẋ
v̇

]
=

[
v

−Kp(x− pr)−Kdv

]
.

We set the initial set X0 = {(x, v) | x2 + (2v − 0.1)2 −
0.01 ≤ 0} and pr = 1, and assume that u = (Kp,Kd) ∈
[1.95, 2.05] × [2.95, 3.05]. Then, by Algorithm 3, with the
obstacle set RAO = {(v − 0.6)2 − 0.012 ≤ 0}, we can verify
that the system is avoidable within time interval [0, 3]. Note
that the minimal reachable set is empty set, so we do not
consider our reachability verification for this example. The ob-
stacle set, and the obtained over/under-approximation results
of reachable sets corresponding to u = (2 ± 0.05, 3 ± 0.05)
at t = 0, 0.3, . . . , 3 are shown in Figure 2a.

We also list the results for over-approximations of maximal
reachable sets with the initial set {(x, v) : x ∈ [−0.1, 0.1], v =
0.05} obtained by CORA-2021, Flow*-2.1.0, and the method
from [8] in Figures 2b, 2c, and 2d, respectively. From Fig-
ures 2a, 2b, 2c, and 2d, we can easily see that our method is
slightly better than CORA, CORA is distinguishingly better
than the method from [8], and the method from [8] is
distinguishingly better than Flow*. Note that we also use
[−0.1, 0.1]×[0, 0.1] as initial for the method from [8] here and
show the results of under-approximations of minimal reachable
sets in Figures 2e and 2f, which show that the results of our
method and the method from [8] are comparable.
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Fig. 3: Results of Example 3.

Example 3. We modified Example 2 to consider time-varying
reference positions, obstacles set, and target set, where ẋv̇

ṗr

 =

 v
−Kp(x− pr)−Kdv

cos(πt4 )

 .
We set the initial set X0 = {(x, v, pr) | x2 + (v − 2)2/4 +
4(pr − 1)2 − 0.04 ≤ 0} and assume that u = (Kp,Kd) ∈
[1.98, 2.02]× [2.48, 2.52]. By Algorithm 3, with the obstacles
set RAO = {(x− t− 0.47)2 − 0.012 ≤ 0} and the target set
RAT = {(pr−x−0.5)2 +(v−0.64)2−0.0052 ≤ 0}, we can
verify the system is avoidable and reachable. The target set,
the obstacle set and the obtained over/under-approximations of
reachable sets corresponding to u = (2.00±0.02, 2.50±0.02)
at t = 0.5, 1 are shown in Figures 3a and 3b, and we also show
the obtained over/under-approximations of reachable sets at
t = 0, 0.2, . . . , 1 in Figure 3c.

The results given by Flow* and CORA with initial set
[−0.2, 0.2] × [1.6, 2.4] × [0.8, 1.2] are shown in Figures 3d
and 3e. Clearly, in Figure 3c, x obtained by our method is
less than 1.4, implying that our method can produce higher
precision than CORA and even higher precision than Flow*.
Since the obstacle set is time-varying, results of Flow* and
CORA cannot be directly used for avoidance verification.

Example 4. We consider a Dubins car [33] described by the
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Fig. 4: Results of Example 4.

following dynamic system with parameters:ẋẏ
θ̇

 =

vcosθ + ux
vsinθ + uy
ω + uθ

 .
Let the initial set X0 = {(x, y, θ) | x2 + y2 + θ2− 0.01 ≤ 0},
the speed as v = 2, the control as ω = −y/2, and
assume u = (ux, uy, uθ) ∈ [−0.02, 0.02] × [−0.02, 0.02] ×
[−0.01, 0.01]. Then, by using Algorithm 3, with the obstacles
set RAO = {(0.26 − y)(0.26 + y) ≤ 0} and the target
set RAT = {(x − 2)2 + y2 + θ2 − 0.012 ≤ 0}, we can
verify that the system is avoidable and reachable within time
interval [0, 1]. Figure 4a shows the target set, the obstacle set
and the obtained over/under-approximation results of reach-
able sets corresponding to u = (±0.02,±0.02,±0.01) at
t = 0, 0.25, 0.5, 0.75, 1 on the plane with θ = 0.

The results given by Flow* and CORA with initial
[−0.1, 0.1]× [−0.1, 0.1]× [−0.1, 0.1] are shown in Figures 4b
and 4c. Clearly, y(t) ≥ −0.2 for all t ∈ [0, 1] in Figure 4a,
while the over-approximations given by CORA and Flow*
both intersect with the obstacle set.

Example 5. We modified an 8-dimensional non-polynomial
system [45] with uncertain disturbances Dx, Dy and Dφ:

ṗx
v̇x
ṗy
v̇y
φ̇
ω̇

Ṫ1

Ṫ2


=



vx
−C

v
Dvx
m
vy

−mg−CvDvy
m
ω

−C
φ
Dω

Iyy

0
0


+



0
Dx

0
Dy

0
Dφ

0
0


+



0 0
− sinφ
m

− sinφ
m

0 0
cosφ
m

cosφ
m

0 0
l
Iyy

l
Iyy

0 α
−α 0


[
T1

T2

]
,

where px, py , and φ represent the horizontal, vertical,
rotational positions of the quadrotor, vx, vy , and ω represent
the corresponding velocities, T1 and T2 are input thrusts
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Fig. 5: Results of Example 5.

TABLE I: Data of Results for Examples.

RT(s) K N Terms ε1 ε2 A. R.
Ex.1 140 10 3 84 10−3 0.015 T. T.
Ex.2 1981 10 13 3077 10−2 0.03 T. F.
Ex.3 256 4 9 781 10−2 0.03 T. T.
Ex.4 827 2 5 1472 10−4 0.0075 T. T.
Ex.5 4404 5 7 9175 10−2 0.03 T. T.

exerted on either end of the quadrotor, and α = 1. For
the coefficients in the system, we choose CvD = 0.1 for
translational drag, m = 5 for the vehicles mass, g = 9.8
for gravity, CφD = 0.1 for rotational drag, Iyy = 10
for the moment of inertia, l = 0.5 and α = 1. We
set the initial set as X0 = {x = (px, vx, . . . , T1, T2) |
‖x − (0, 2, 0, 1, π6 , 0.1, 10,−10)T ‖2 ≤ 0.1} and let u =
(Dx, Dy, Dφ) ∈ [−0.02, 0.02]× [−0.02, 0.02]× [−0.02, 0.02].
Then, with the obstacles set RAO = {(px − 2.05)2 + (py +
2.45)2 − 0.01 ≤ 0} and the target set RAT = {‖x −
(2.29, 2.78,−4.425,−10.35, 0.31,−0.82,−3,−13)T ‖2 ≤
0.005}, Algorithm 3 can verify that the system is avoidable and
reachable within interval [0, 1]. Figure 5a shows the target set,
the obstacle set and the obtained over/under-approximations of
reachable sets corresponding to u = (±0.02,±0.02,±0.02)
at t = 0, 0.1, . . . , 1 onto the corresponding px − py planes
defined by letting (vx, vy, φ, ω, T1, T2) equal to the simulated
trajectory with (Dx, Dy, Dφ) = (0, 0, 0) starting from
x0 = (0, 2, 0, 1, π6 , 0.1, 10,−10)T .

The results given by Flow* and CORA with the smallest box
containing X0 and the obstacle set are shown in Figures 5b
and 5c. Neither of Flow* and CORA can verify that the
system is avoidable, which shows that our method has higher
precision than CORA and Flow*.

In Table I, we list certain data obtained by our method,
i.e. the running times (RT), the number of time segments
(K), the maximal order of expansion (N), the maximum
number of terms (Term) in each segment of Over(x, t,u) or
Under(x, t,u), final precisions ε1 and ε2, and the verification

TABLE II: Parameters Setting for CORA

CORA options.timeStep .zonotopeOrder .taylorTerms
0.05/0.01/0.005/0.001 10/30/50 5/50/100

TABLE III: Parameters Setting for Flow*

Flow* fixed steps adaptive orders
0.001/0.0005 16/32/64

TABLE IV: Parameters Setting for method in [8]

method in [8] sampling-time order
0.02/0.01/0.005 3/30/50

-0.2 0 0.2 0.4 0.6 0.8 1
x1

0

0.1

0.2

0.3

0.4

0.5

0.6

x 2

(a) Over-approx. of
Reachmax T

f ,g by CORA

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

−0.2  0  0.2  0.4  0.6  0.8  1  1.2

v

x

(b) Over-approx. of
Reachmax T

f ,g by Flow*
(c) Over-approx. of
Reachmax T

f ,g by [8]

Fig. 6: Results of Example 2 with Higher Parameters Setting.

results for avoidability (A.) and reachability (R.). Clearly,
for polynomial systems with low degree and trigonometric
systems with low dimension, our method shows a good
performance. This is because the obtained Over(x, t,u) and
Under(x, t,u) have a low degree and few terms such that
RSolver can deal with them efficiently. However, since Algo-
rithm 3 needs to increase time segments to handle longer time
intervals (see Example 2) and increase the degree of expansion
to achieve the higher precision requirement (see Example 4)
or deal with a higher dimensional system (see Example 5),
these will definitely lead to an increase in the number of
terms for the approximations as well as an increase in the
running time. Moreover, it is noteworthy that we do not need
extra calculation when dealing with time-varying target set and
obstacle set (see Example 3).

Moreover, for fair comparisons, we also experimented with
all the combinations of parameter settings listed in Tables II
and III for CORA and Flow* for all examples, and Table IV
for the method in [8] for Example 2. However, the results
did not change significantly. To intuitively understand this, we
show the results of Example 2 with options.timeStep=0.001,
options.zonotopeOrder=50 and options.taylorTerms=100 for
CORA, fixed steps=0.0005 and adaptive orders=64 for Flow*,
and sampling-time=0.005 and order=50 for the method in [8]
in Figure 6. Clearly, from Figures 2, 5 and 6, we can see that
to some extent, the method in [8] has higher precision than
Flow*, CORA has higher precision than the method in [8],
and our method has higher precision than CORA.

VI. CONCLUSION

In this paper, for a class of time-varying systems with uncer-
tain disturbances, we first introduced the evolution function for
exactly describing the reachable set and then obtained the over-



and under- approximations of the reachable set by a remainder
estimation based methodology. Afterwards, we proposed a nu-
merical quantifier elimination based methodology for verifying
our reach-avoid problem. Especially, if the system is robustly
avoidable and reachable, our algorithm can definitely terminate
with “true”. Finally, we confirmed the efficacy and precision
of our method by five benchmarks with comparisons.

In the future, we will investigate the reach-avoid verification
of switched and even hybrid systems with time-varying dis-
turbances. Moreover, it is also interesting to study the control
synthesis problem for avoidance-guaranteed reachability.
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