
A small, but important, concurrency problem in
Verilog’s semantics? (Work in progress)

Andreas Lööw
Imperial College London

London, UK

Abstract—Despite its many flaws, Verilog is today both the most
popular hardware design language and a popular language for
communication between hardware development tools. Ever since
the language was standardised, researchers have made attempts
at formalising its semantics. To this day, no such attempt has
been fully successful. In this paper, we highlight one – we think,
important – concurrency problem in Verilog’s semantics that
has, for now, sidetracked our own ongoing Verilog semantics
formalisation attempt. To us, the problem calls for a clarification
of the Verilog standard. We propose a potential fix for the problem.

Index Terms—Verilog, semantics, concurrency

I. INTRODUCTION

In the ideal case, formalising the semantics of a software
or hardware language is a simple matter of first (1) carefully
reading the language’s standard and then (2) writing down what
was read, in some appropriate mathematical form. Sadly, life is
rarely this easy. E.g., in their C formalisation project, Memarian
et al. [1], [2] end up balancing multiple sources of truth,
including the C standard, existing C code, experimental data
from compilers, and beliefs held by systems programmers and
compiler writers (which Memarian et al. collect by a survey).

In this work-in-progress paper, we report on our work
towards a formalisation of (a subset of) the hardware description
language Verilog. The end goal of our work is a detailed
formal semantics for the language, closely following the
Verilog standard [3]. In this paper, specifically, we contribute a
discussion on a problem, which we refer to as THE PROBLEM,
at the core of Verilog’s concurrency semantics. We offer an
analysis of THE PROBLEM, and, in the process, we discuss
some of the balancing acts between different sources of truth
involved in formalising a hardware language. The two main
sources of truth we consider are the Verilog standard and the
semantics of hardware, but at times other sources come into
play as well. Although not yet fully convinced of the correct
way forward, we suggest a fix for THE PROBLEM that looks
reasonable to us.

II. THE PROBLEM

We now introduce THE PROBLEM, by example. Consider the
(slightly contrived) module netassign in Fig. 1, a variant of
Meredith et al.’s [4] netassign module (which we return to
later). We ask: what should the value of w be after initialisation?

In the netassign module, the always block represents
combinational logic, i.e., stateless logic, and we can think of the
initial block as representing sequential logic, i.e., stateful

module netassign;
logic w, r;

// always block
always @(r)
w = r;

// initial block
initial begin
r = 0;
r = 1;
end
endmodule

Fig. 1: Example module illustrating THE PROBLEM.

logic. In Verilog, the behaviour of blocks such as always
and initial is defined by C-like code (“behavioural code”)
and statements inside a block are executed in order.

The semantics of hardware tells us the answer to the
netassign question is that w must be equal to 1 after
initialisation since the always block is supposed to model
combinational logic (and hence have no memory). Thus, to
properly model hardware, Verilog’s semantics must give the
same behaviour. However, as the Verilog standard is written
now, it appears to not be the case.

III. A SHORT INTRODUCTION TO VERILOG’S SEMANTICS

We now give a short introduction to Verilog’s semantics. The
introduction we give, in particular the semantics of processes, is
intentionally vague because the exact details of how processes
are to be executed are unclear. Indeed, the very purpose of this
paper is to highlight an unclarity at the centre of the semantics
of processes in Verilog.

The Verilog standard defines a scheduling semantics for
Verilog [3, Ch. 4], commonly referred to as Verilog’s simulation
semantics. Verilog’s synthesis semantics, as defined by the (now
withdrawn) synthesis standard [5], is relevant here only insofar
as it tells us what kind of logic different constructs are mapped
to (combinational vs. sequential logic).

Verilog’s simulation semantics is event based and divides
execution into simulation cycles. In short, Verilog allows
hardware designers to, in various ways, model hardware as
concurrently executing shared-memory processes. Processes
can be defined by e.g., as we have just seen in the netassign
example, initial blocks and always blocks; the former
block type executes just once and the latter executes repeatedly.

The simulation semantics is event based in the sense that the
different kinds of Verilog constructs available induce processes
that react/wait for different relevant events, e.g., an always
block modelling sequential logic might be configured to react
to positive edges of a circuit’s clock signal. E.g., the following
always block increments two registers a and b at every
positive edge of a clock clk:1
always @(posedge clk) begin
a <= a + 1;
b <= b + 2;

end

Synthesisable always blocks have only one event control
construct, here @(posedge clk), which must be placed at
the very beginning of the block. Nonsynthesisable always
blocks, such as test bench code, are under no such restriction.

Blocks can also represent combinational logic:
always @(a, b)
c = a + b;

The above block reacts to updates on the inputs a and b instead
of clock edges. For combinational logic, the event control’s
so-called sensitivity list – in the above example, a, b – must
include all inputs the block depends on if the block is to be
synthesisable; nonsynthesisable blocks have no such restriction.

At the core of Verilog’s simulation semantics, we find its
stratified event queue and event scheduling algorithm. We do
not, however, detail them in this paper. For our purposes, it
is enough to know that some constructs, such as assignments,
when executed, generate events other processes are able to
react to, by event control constructs, as illustrated above.

IV. THE SOLUTION?
We now return to the netassign module (Fig. 1). We

first offer our understanding of the problem illustrated by the
module and then suggest a fix.

A. Analysis of the problem
To us, the core of THE PROBLEM is that processes cannot be

(1) expected to react too all (relevant) events – as required by
the semantics of hardware – and at the same time be treated
as (2) nondeterministically interleaved software-like threads –
as required by the Verilog standard. In other words, our two
main sources of truth are in conflict!

Regarding (2), the standard [3, p. 66] is clear on the point
that an executing process can be preempted at any time:2

1Note that so-called nonblocking assignments (<=) are used instead of
so-called blocking assignments (=) in the example. We do not discuss the
differences between the two types of assignments in this paper since the
differences do not affect our discussion.

2The standard, however, never, as far as we can tell, clarifies the exact
nature of these interleavings/preemptions. (E.g., are statements atomic?) With
that said, effectively, we think, for a comparison with software interleavings,
the memory consistency model Verilog ends up with is something similar to
sequential consistency [6]. E.g., processes always read the latest value written
to a variable [3, p. 85] (i.e., straightforward memory visibility guarantees)
and statements inside blocks execute in order [3, p. 209] (i.e., no statements
are reordered). (For synchronous synthesisable code, many memory-model
questions are rendered trivial since (with a few exceptions, like multi-driven
nets and block-memory modelling) there is at most one process writing
to a variable/net (more precisely, no writes to overlapping “longest static
prefixes” [3, p. 282] of variables/nets) and processes can communicate in a
race-free manner using nonblocking assignments and the shared clock.)

Another source of nondeterminism is that statements
without time control constructs in procedural blocks
do not have to be executed as one event. [...] At
any time while evaluating a procedural statement,
the simulator may suspend execution and place the
partially completed event as a pending event in
the event region. The effect of this is to allow the
interleaving of process execution, although the order
of interleaved execution is nondeterministic and not
under control of the user.

Concretely, for the netassign module, THE PROBLEM
plays out as follows. For the purpose of illustration, say
processes can be in one of two separate states: they are either
running or they are waiting for one or more events to happen.
If a process is in its running state, it is executed along with
the other running processes in an interleaved manner until it
reaches its event control (i.e., the start of its block). Now, the
following interleaving poses a problem: (1) Both processes
start in their running state. (2) The always block starts first
and immediately enters its waiting state because of @(r). (3)
The r = 0 write from the initial process executes, and
this notifies the always process that r has been updated;
consequently, the always process is now running again. (4)
w = r from the always process execute. (5) r = 1 from
the initial process executes, which the always process
does not see since it is in its running state (i.e., it is not
listening for events). (6) The initial process finishes and
the always process enters its waiting state again.

Ultimately, of course, THE PROBLEM is not limited to com-
binational-logic processes (like in the netassign module),
stateful process are equally affected.

B. Suggestion to address the problem

We suggest a minimally invasive (and therefore, hopefully,
largely backward compatible) fix to THE PROBLEM: restrict
interleavings by disallowing preemption (i.e., modify (2)). That
is, after being woken up by an event, a process executes without
interruption until it hits an event control (or some other blocking
construct). The same approach is taken by Gordon [7] in his
work on a Verilog-inspired language, and as we shall soon see,
in some of the Verilog tools in use today.

V. HOW OPEN-SOURCE TOOLS HANDLE THE PROBLEM

We now investigate how open-source Verilog tools handle
THE PROBLEM. In other words, we address the question of how
the tools cope with implementing a seemingly broken language
standard. Specifically, of relevance is simulation tools, not
synthesis tools, since we are investigating Verilog’s simulation
semantics, not Verilog’s synthesis semantics. Therefore, we do
not consider open-source synthesis tools such as Yosys [8].

In total, we consider two simulation tools: Icarus Verilog [9]
and Verilator [10].

A. Icarus

Icarus is an event-based simulator that, in our impression,
follows the standard closely. Icarus handles THE PROBLEM

module loop;
logic v = 0;

// Process 1
initial forever v = 0;

// Process 2
initial $display("now i'm here");
endmodule

Fig. 2: Verilog module loop. (If using always ... instead
of initial forever ..., Icarus aborts with an error
complaining that the block will loop infinitely.)

by not doing thread preemption; a comment above the top-
level process simulation function vthread_run [11] states:
“Cause this thread to execute instructions until in [sic] is put
to sleep by executing some sort of delay or wait instruction.”
(As an aside, discussions about the kind of interleavings we
discuss in this paper appear to have taken place on the Icarus
mailing list [12], and those discussions in turn refer to previous
relevant discussions on similar topics.)

The way thread scheduling is implemented in Icarus is
sensitive to the declaration order of the processes. E.g., consider
the (nonsynthesisable) module loop in Fig. 2. If simulated
as given in Fig. 2, the loop module never prints “now i’m
here” (since process 1 never is preempted). If the order of the
two processes is changed in the Verilog source code, “now
i’m here” is printed immediately. With preemption, we would
not have the same behaviour as in Icarus. It is, however,
unclear what behaviour to prefer here (as we do not have
the semantics of hardware as a guiding light since the module
is nonsynthesisable).

In conclusion, Icarus leaves us with the impression that not
doing preemption is a viable option for real-world tools since
Icarus is a widely used tool and the vthread_run comment
is (according to git blame) over 20 years old. (Of course,
a simulator is free to not preempt threads even if allowed by
the language standard since a simulator is not forced – nor
expected – to explore all possible execution paths. Nevertheless,
the existence of a nonpreempting simulator tells us that not
doing preemption is viable in practice.)

B. Verilator

We now turn to the simulator Verilator. The simulation
approach taken in Verilator – synthesis to C++ (or SystemC)
– has more in common with synthesis tools than event-driven
simulators like Icarus. Moreover, our impression is that the
Verilator development team is more than happy to trade
standard conformity for speed (e.g., Verilator is based on two-
state simulation rather than the standard’s four-state). Hence,
Verilator does not help us in resolving THE PROBLEM.

VI. PREVIOUS WORK

We now relate our work to previous work. For context, the
first Verilog standard was Verilog-1995 [13] and the most
recent standard is SystemVerilog-2017 [3]. (Our discussions in
this paper are based on the latest standard.)

The following is an, in all likeliness nonexhaustive, enumera-
tion of previous Verilog formalisation projects (but nevertheless
includes all previous projects we are aware of):

• Gordon3 [14] (1995)
• Schneider and Xu [15], [16] (1998)
• Pace’s PhD thesis work [17] (1998)
• Jifeng et al.’s long line of work, e.g., [18]–[23] (starting

2000)
• Pace [24] (2000) plus references (see also Gordon [7])
• Meredith et al. [4] (2010)
• Lööw and Myreen [25] (2019)
Meredith et al.’s [4] Verilog semantics, implemented in the

K framework, is, to the best of our knowledge, the most
complete and detailed Verilog semantics to date. (The semantics
is based on Verilog-2005 [26].) When comparing our work to
previous work, we therefore focus foremost on their semantics.
Other previous projects, in our view, provide not a direct
formalisation of the standard, but rather provide alternative
Verilog semantics designed to be usable for reasoning or
otherwise aid our understanding of Verilog as a language. These
aims in themselves are well worth pursuing; but ultimately, any
nonstandard semantics must be related back to (a formalisation
of) the standard semantics of Verilog to show the nonstandard
semantics, in some sense, sound with respect to the standard
semantics. In other words, whatever one’s aims with one’s
Verilog semantics is, a formalisation of the standard semantics
will, eventually, be needed.

A. Meredith et al.’s Verilog semantics

The netassign module in Fig. 1 is a variant of Meredith
et al.’s netassign module, we now discuss Meredith et al.’s
analysis of their module.

Meredith et al.’s netassign module uses a continuous
assignment instead of an always block for combinational
modelling (i.e., assign w = r) and, in their module, w
is declared a net (specifically, a wire net) instead of a
variable. We now discuss the two approaches to the semantics
of continuous assignments they discuss and highlight some
problems with their discussions. Lastly, we relate the discussion
back to THE PROBLEM.

Meredith et al.’s first approach is to give continuous
assignments a procedural-assignment-like semantics (i.e., a
semantics similar to the semantics of assignments made inside
e.g. always blocks) since “[t]he best [Meredith et al.] can
glean from the standard is that a [continuous] assignment should
perform essentially as an always block with one blocking
assignment in it [...].”4 This approach results in problems
for them since under this approach 0 is one possible value
for w after initialisation (which, as pointed out in Sec. II, is
not consistent with the semantics of combinational logic). To

3Only includes an informal semantics/outline for a formal semantics
4For readers familiar with Verilog: Clearly, this “glean” of the standard

holds only in a limited range of situations. E.g., if a net is driven by multiple
continuous assignments, the resultant net value is determined by the resolution
function of the net type, which is not the case for variables written to by
multiple always blocks [3, p. 85].

Meredith et al., the problem is that there should be at most “one
outstanding update event [in the event queue] for a given net
at a time.” To address this problem, they suggest to enforce a
programming style where “[multiple] assignments to the same
variable should never occur in the same simulator cycle”. We
see this as too invasive, given e.g. how common the practice
is of assigning default values to variables in the beginning
of procedural blocks. (See Sec. A for an example.) In other
words, the suggested approach goes against the source of truth
provided by existing Verilog code.

Meredith et al.’s second approach, to avoid multiple outstand-
ing update events, brings in the Verilog standard’s semantics of
continuous assignments into the discussion. However, instead
of citing the standard, they cite Gordon [14]. They say that
their discussion takes inspiration from Gordon’s discussion on
“cancelling”. The idea is that new update events from continuous
assignments cancel previous update events in the event queue,
thereby avoiding ending up with multiple outstanding update
events. Meredith et al. see their discussion as addressing a flaw
in the standard; however, cancelling is part of Verilog standard’s
behaviour of continuous assignments.5 Specifically, if we
understand continuous assignments without specified delays as
continuous assignments with zero delay, then “descheduling”
as described in Sec 10.3.3 “Continuous assignment delays”
in the standard (Sec. 6.1.3 in the Verilog-2005 standard their
formalisation is based on), in our reading, applies here.

Given the semantics of continuous assignments, it is reason-
able to ask: could we, instead of dropping preemption, address
THE PROBLEM by adopting continuous-assignment-like seman-
tics for procedural assignments? We say “no”. Consider e.g. a
block always @(inp1, inp2) w = inp1 + inp2;.
Given the problem interleaving in Sec. IV-A, it is clear that such
a block can miss events even without there ever being multiple
assignments to the same variable/net in a simulation cycle.

VII. WHAT ABOUT VHDL?

Verilog is often compared to (its archenemy) VHDL, defined
by the VHDL-2019 standard [27]. Given the many similarities
between the two languages, it is reasonable to ask: does THE
PROBLEM occur in VHDL? We believe the answer to be “no”.

According to Sec. 14.7.5 “Model execution” of the VHDL
standard, after a process has been “resumed” as a result of an
event occurring on an input the process is currently sensitive to,
“[t]he process executes until it suspends.” This might leave the
reader with the impression that interleavings between processes
are not part of VHDL execution. However, Sec. 11 “Concurrent
statements” (a process statement is a type of concurrent
statement) of the VHDL standard states the following:

Within a given simulation cycle, an implementation
may execute concurrent statements in parallel or in
some order. The language does not define the order,
if any, in which such statements will be executed. A

5Indeed, Gordon [14] himself seems to introduce cancelling to be faithful
to (his reading of) the standard: “Verilog’s semantics specifies that at most
one change to a given wire can be scheduled at any one time, [...].”

description that depends upon a particular order of
execution of concurrent statements is erroneous.

The above might instead leave the reader with the impression
that processes can be interleaved (“execute [...] in parallel”);
but, at the same time, since a hardware design (“a description”)
whose behaviour (or correctness, depending on how you read
the standard) depends on how its statements are scheduled is
“erroneous”, interleavings cannot have any effect on executions.

A second source of truth we can consider is previous work
on formalising the semantics of VHDL. E.g., Van Tassel’s [28]
formal VHDL semantics, for VHDL-1987 [29], which is
“defined in an operational manner that closely adheres to the
informal description of the simulation model of full VHDL”
(p. 104), does not include interleavings (see “cs3” on p. 93).

Clearly, regardless of whether VHDL allows for interleavings,
the potentially problematic case is when interleavings are al-
lowed. But even if we come to the conclusion that interleavings
are part of VHDL executions, because of, in contrast to Verilog,
processes reacting to events and processes executing are split
into two separate phases in VHDL executions (see, again,
Sec. 14.7.5 “Model execution”), interleavings do not, as far as
we can tell, pose a problem for VHDL in the way we have, in
this paper, shown they pose a problem for Verilog. As, when
reacting to events are, as in VHDL, handled by a phase separate
from running processes, no process will ever miss events as a
result of being in its running state, since running happens in a
separate running phase.

Hence, we conclude, even if VHDL and Verilog share many
similarities, as the cores of their simulation algorithms are
fundamentally different from each other, considering THE
PROBLEM in the context of VHDL does not help us in
addressing THE PROBLEM in the context of Verilog.

VIII. CONCLUSION

We have, based on our reading of the Verilog standard,
highlighted a concurrency-related problem in the semantics
of Verilog. At the very least, if our reading of the standard
is somehow flawed, we have shown an opportunity to clarify
parts of the standard. If, on the other hand, our reading is
correct, substantial questions remain:

• Here, we have focused on synthesisable fragments of
Verilog. Does our suggestion to drop interleavings hold
up if we also considered nonsynthesisable fragments?
E.g., (the most straightforward form of) busy waiting is
impossible without preemption – but, at the same time,
this should not be a problem considering Verilog’s rich
support for waiting for events.

• How does ruling out nondeterministic interleavings be-
tween processes affect important simulator (and synthesis
tool) optimisations? Are, suddenly, important optimisa-
tions no longer allowed? (See Sec. B for a short comment.)

Finally, when THE PROBLEM has been settled, we can
continue our work towards an event-driven formal semantics
for Verilog based on a detailed understanding of Verilog’s
simulation semantics, which can be used, among other things,
to validate previous simplified Verilog semantics projects.

APPENDIX

A. Multiple assignments example

The following code is example 4.5c “case with defaults
listed before case statement” from Mills [30], included here
for convenience:
always_comb begin
out1 = in1a;
out2 = in2a;
case (sel)
cond2: out2 = in2b;
cond3: out1 = in1c;
endcase
end

Note how it is possible for both out1 and out2 to be
assigned multiple times in the same simulation cycle. (An
always_comb block is a variant of an always block with
an automatically inferred sensitivity list.)

B. A short comment on interleaving-based optimisations

module redundant;
logic a, b, c, inp;

always_comb begin
$display("EVAL 1: time = %0d, inp = %b, b = %b",

$time, inp, b);
a = inp;
c = b + 1;
end

always_comb begin
$display("EVAL 2: time = %0d, a = %b",

$time, a);
b = a;
end

initial begin
// "delayed" assignments, causes the process to
// suspend for 5 simulation cycles before continuing
#5 inp = 1;
#5 inp = 0;
end

endmodule

Fig. 3: Verilog module redundant.

Here, we cannot do justice to the question of how allowing ar-
bitrary interleavings and simulator optimisations are connected.
We can, however, make some preliminary remarks.

Consider the (nonsynthesisable) module in Fig. 3. If arbitrary
interleavings are allowed, a smart simulator could schedule
the processes such that they execute in the same order as the
following block:
always_comb begin
a = inp;
b = a;
c = b + 1;
end

To investigate whether today’s simulators take advantage of
such opportunities, as allowed by the current Verilog standard,
we ran the module in Fig. 3 using Icarus 11.0 and the four
commercial simulators available on EDA playground (https:
//edaplayground.com), which are, as of the time of this writing,
Aldec Riviera Pro 2020.04, Cadence Xcelium 20.09, Mentor

Questa 2021.3, and Synopsys VCS 2020.03. All the simulators
give the same printout (modulo the order of execution in
time 0):

EVAL 1: time = 0, inp = x, b = x
EVAL 2: time = 0, a = x
EVAL 1: time = 5, inp = 1, b = x
EVAL 2: time = 5, a = 1
EVAL 1: time = 5, inp = 1, b = 1
EVAL 1: time = 10, inp = 0, b = 1
EVAL 2: time = 10, a = 0
EVAL 1: time = 10, inp = 0, b = 0

Note how all simulators execute the first always_comb block
twice both at time 5 and 10 (instead of interleaving the two
blocks such that no redundant re-execution is needed).

The behaviour of Icarus is expected given that Icarus
does not do process preemption. What the four commercial
simulators are doing behind the scenes we cannot know since
the simulators are not open source. We can, however, draw the
conclusion that none of the simulators – for this module – take
advantage of the additional optimisation opportunities enabled
by arbitrary interleavings. This, of course, does not give us
an answer for the general case, but nevertheless indicates that
dropping process preemption might be a viable way forward.

REFERENCES

[1] K. Memarian, J. Matthiesen, J. Lingard, K. Nienhuis, D. Chisnall,
R. N. M. Watson, and P. Sewell, “Into the depths of C: Elaborating the
de facto standards,” in Conference on Programming Language Design
and Implementation (PLDI), 2016.

[2] K. Memarian, V. B. F. Gomes, B. Davis, S. Kell, A. Richardson, R. N. M.
Watson, and P. Sewell, “Exploring C semantics and pointer provenance,”
Proceedings of the ACM on Programming Languages, vol. 3, no. POPL,
2019.

[3] “IEEE standard for SystemVerilog–unified hardware design, specification,
and verification language,” IEEE Std 1800-2017, 2018.

[4] P. Meredith, M. Katelman, J. Meseguer, and G. Roşu, “A formal
executable semantics of Verilog,” in International Conference on Formal
Methods and Models for Codesign (MEMOCODE), 2010.

[5] “Verilog register transfer level synthesis,” IEEE Std 62142-2005, 2005.
[6] L. Lamport, “How to make a multiprocessor computer that correctly

executes multiprocess programs,” IEEE Transactions on Computers, vol.
C-28, no. 9, 1979.

[7] M. J. C. Gordon, “Relating event and trace semantics of hardware
description languages,” The Computer Journal, vol. 45, no. 1, 2002.

[8] C. Wolf, “Yosys open synthesis suite.” [Online]. Available: https:
//yosyshq.net/yosys

[9] “Icarus verilog web page.” [Online]. Available: http://iverilog.icarus.com
[10] “Verilator web page.” [Online]. Available: https://veripool.org/verilator
[11] “Source file vthread.h from Icarus ‘stable version 11.0’ source code,”

2020. [Online]. Available: https://github.com/steveicarus/iverilog/blob/
v11_0/vvp/vthread.h#L66

[12] “Mailing list iverilog-devel: Verilog execution of al-
ways block as multiple events,” 2020. [Online]. Avail-
able: https://sourceforge.net/p/iverilog/mailman/iverilog-devel/thread/
2043773330.394897.1589755112783@mail.yahoo.com

[13] “IEEE standard hardware description language based on the Verilog
hardware description language,” IEEE Std 1364-1995, 1996.

[14] M. Gordon, “The semantic challenge of Verilog HDL,” in Symposium
on Logic in Computer Science, 1995.

[15] G. Schneider and Q. Xu, “Towards a formal semantics of Verilog using
duration calculus,” in Formal Techniques in Real-Time and Fault-Tolerant
Systems, 1998.

[16] G. Schneider and X. Qiwen, “Towards an operational semantics of
Verilog,” International Institute for Software Technology, United Nations
University, Tech. Rep. 147, 1998.

[17] G. J. Pace, “Hardware design based on Verilog HDL,” Ph.D. dissertation,
Oxford University, 1998.

https://edaplayground.com
https://edaplayground.com
https://yosyshq.net/yosys
https://yosyshq.net/yosys
http://iverilog.icarus.com
https://veripool.org/verilator
https://github.com/steveicarus/iverilog/blob/v11_0/vvp/vthread.h#L66
https://github.com/steveicarus/iverilog/blob/v11_0/vvp/vthread.h#L66
https://sourceforge.net/p/iverilog/mailman/iverilog-devel/thread/2043773330.394897.1589755112783@mail.yahoo.com
https://sourceforge.net/p/iverilog/mailman/iverilog-devel/thread/2043773330.394897.1589755112783@mail.yahoo.com

[18] H. Jifeng and X. Qiwen, “An operational semantics of a simulator
algorithm,” International Institute for Software Technology, United
Nations University, Tech. Rep. 204, 2000.

[19] H. Jifeng and Z. Huibiao, “Formalising Verilog,” in International
Conference on Electronics, Circuits and Systems (ICECS), 2000.

[20] J. P. Bowen, H. Jifeng, and X. Qiwen, “An animatable operational
semantics of the Verilog hardware description language,” in International
Conference on Formal Engineering Methods (ICFEM), 2000.

[21] H. Zhu, J. He, and J. P. Bowen, “From operational semantics to
denotational semantics for Verilog,” in Correct Hardware Design and
Verification Methods (CHARME), 2001.

[22] Z. Huibiao, J. P. Bowen, and H. Jifeng, “Deriving operational semantics
from denotational semantics for Verilog,” in Proceedings Eighth Asia-
Pacific Software Engineering Conference, 2001.

[23] H. Zhu, J. He, and J. P. Bowen, “From algebraic semantics to denotational
semantics for Verilog,” in International Conference on Engineering of
Complex Computer Systems (ICECCS), 2006.

[24] G. J. Pace, “The semantics of Verilog using transition system combinators,”
in Formal Methods in Computer-Aided Design (FMCAD), 2000.

[25] A. Lööw and M. O. Myreen, “A proof-producing translator for Verilog
development in HOL,” in Formal Methods in Software Engineering
(FormaliSE), 2019.

[26] “IEEE standard for Verilog hardware description language,” IEEE Std
1364-2005, 2006.

[27] “IEEE standard for VHDL language reference manual,” IEEE Std 1076-
2019, 2019.

[28] J. P. Van Tassel, “An operational semantics for a subset of VHDL,”
in Formal Semantics for VHDL, C. D. Kloos and P. T. Breuer, Eds.
Springer, 1995.

[29] “IEEE standard VHDL language reference manual,” IEEE Std 1076-1987,
1988.

[30] D. Mills, “Yet another latch and gotchas paper,” in Synopsys Users Group
Conference (SNUG), 2012.

	Introduction
	The problem
	A short introduction to Verilog's semantics
	The solution?
	Analysis of the problem
	Suggestion to address the problem

	How open-source tools handle the problem
	Icarus
	Verilator

	Previous work
	Meredith et al.'s Verilog semantics

	What about VHDL?
	Conclusion
	Appendix
	Multiple assignments example
	A short comment on interleaving-based optimisations

	References

