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Abstract—Unmanned aerial drones are Cyber-Physical Sys-
tems (CPSs) with increasing availability, popularity, and capabil-
ity. Although other aeronautical and safety-critical industries ap-
ply stringent regulations and design approaches, smaller drones
tend to have much weaker and informal design requirements.
Due to the strong open-source movement in this space, there are
numerous opportunities for malicious actors to find weaknesses
to attack drone systems, and in parallel develop their own rogue
drones. These factors present a risk of damage to people and
property in addition to compromise of integrity and availability.
However, a formal framework for ethical hacking that combines
attacker modelling and launching of attacks is lacking in the lit-
erature. To this end, we leverage runtime enforcement, combined
with the idea of suspension from synchronous programming to
develop the first such formal framework.

The proposed framework enables the modelling of complex
attack vectors on drones. To facilitate this, we propose a bespoke
policy-based runtime enforcement framework called enforcer
interchange (EI). It is capable of both individual intent/target-
specific attacks as well as more sophisticated combinations of
attacks, which it manages by enabling and disabling attack
enforcers at runtime in a context-aware manner. To demonstrate
our framework, we utilise a quadcopter drone simulator and
record the changes in the drone’s behaviour as it executes a
range of missions under different attacks. Our approach provides
a framework for testing drones’ resilience and defenses against
malicious attacks, as well as exploring the capabilities of rogue
drones.

I. INTRODUCTION

Unmanned aerial drones are Cyber-Physical Systems
(CPSs) [1] as they intertwine software controllers, hardware
actuators, and communication mechanisms for controlling the
different tasks related to flight. There is a rapidly expanding
global market for drones ranging from QR code displays in
Shanghai [2] to passenger transport and delivery drones [3].
Another example sees Alphabet’s Wing project already deliv-
ering to customers in the United States and Australia [4].

There are a range of communication architectures used in
controlling drones, from hand held radio to satellite-based
options, which introduces potential security vulnerabilities.
For instance, a security analysis of the DJI Phantom 3 by
Trujano et al. in [5] shows that drones, like many other
technologies, have weaknesses. Likewise, Yaacoub et al. in [6]
provide a deep review of the security of drones. One common
factor is unencrypted communication between base station

and drone [7], [8]. This work discusses the wide range of
cybersecurity flaws typically found in current drone systems,
highlights the inconsistent and lagging regulation for drone
owners, and covers existing counter measures to these vul-
nerabilities. Thus, a malicious actor can cause considerable
damage to life and property using a drone attack mechanism.

In established safety critical industries such as aeronautics,
model-driven approaches are often required to ensure safety
and security. However, this is not extended to small unmanned
drones. With no expected design standard, there is an opportu-
nity to develop a test bed of security attacks that drone owners
and designers alike could use to measure the performance (i.e.
safety) of the drone when under malicious attack.

In this work, we present formal models of attacks on a drone
system, and a formal methodology to combine individual
attacks for a range of scenarios. Our work falls into runtime
assurance [9], where system behaviours are augmented by
supervisory systems. In contrast to existing work, our approach
enforces security breaches by dynamically selecting from a
bank of runtime enforcers. Edit automata-like [10] runtime
enforcers encompass the capabilities of typical drone attacks,
providing a test-bed for developing more robust controllers.

This leads us to the main contributions of the paper. (1) We
present a range of runtime enforcers which model attacks on
communication in a quad copter drone system. (2) We present
a formal approach, called Enforcer Interchange (EI), for com-
bining runtime enforcers. EI extends existing techniques based
on runtime enforcement of reactive systems [11], [12], which
deal only with single enforcers. (3) We demonstrate individual
attacks and a sophisticated combination of attacks for delivery
drone example. This runs in a simulator for a popular open
source drone control software, ArduPilot.

The rest of the paper is organised as follows: Section II
introduces attack modelling and our drone case study. Sec-
tion III provides preliminaries and notation which we apply.
In Section IV we present runtime enforcers as a method for
modelling attacks. In Section V we present Enforcer Inter-
change (EI) for complex attack modelling, with an example
for our case study. In Section VI we present the impact of
our attacks on the drone delivery system. Finally, Section VII
presents an overview of the related work in this area, and
Section VIII concludes the paper.



II. ATTACK MODELLING FOR DRONES

A. Attacks on Drones
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Figure 1. Drone attack model for jamming, injection, and editing capabilities

Given the wide attack space in existing drones, it is un-
surprising various cyber-attacks have been demonstrated. For
example, WiFi based jamming and deauthentication attacks
in [13] allow denial of service, man-in-the-middle, and packet
spoofing to give the attacker complete drone control. Other RF
jamming approaches attempt to trigger a safe landing/return
home [14] and to prevent sensing and communication [15].
Another method of attack spoofs GPS systems, allowing the
attacker to control the drone’s location [16], [17]. Hardware
trojans in communication systems [18] are another attack
vector which can inject false sensor data, alter firmware, and
breach confidentiality [19].

In this work we create a simplified attack model (Figure 1)
which groups these and other attacks into the following
categories, and ensure that our formal model can capture the
semantics of each kind of attack:
• Jamming: a denial of service attack that prevents two

way communication between base station and drone.
• Injection: creation of control and/or status signals.
• Alteration: editing control or status signals.
Runtime enforcement [20] offers an interesting avenue for

creating an environment for ethical hacking over drones. An
enforcer is used to ensure that a given set of desired policies
hold over a given CPS. Coincidentally, the framework of edit
automata [10] proposes three types of enforcement actions,
namely suppression, where an input is suppressed, insertion,
where a new input is inserted and editing where an input is
edited by combing suppression with insertion. These roughly
correspond to jamming, insertion, and alteration respectively.
Thus, this provides us with a nice formal basis for developing
the new ethical hacking framework. However, edit automata
are not sufficient for this task as they were developed for non-
real-time systems. Moreover, there is a need for developing
a framework where complex attacks can be modelled and
launched such that certain attack policies can be turned on
and off as needed. Such requirements are not achievable using
existing enforcement frameworks.

B. Attack Modelling with Runtime Enforcers

Runtime enforcement (RE) [21]–[23] is a formal mechanism
which synthesises an enforcer to observe a black-box system

(a) Bidirectional runtime enforcement [12]

(b) Attack modelling with bidirectional runtime enforcement

Figure 2. Comparison of existing and attack runtime enforcement

and ensure a set of policies are satisfied. Before a policy
is violated, the enforcer may block execution [21], insert or
suppress events [23], or delay events [22]. For bidirectional
reactive systems, input and output events are edited [12] to
prevent violation.

As illustrated in Figure 2a, bidirectional safety enforcers
perform, when necessary, some action on environment inputs
and controller outputs to ensure the policy is satisfied at
all times. In our work, we instead flip the application from
ensuring safety to instead perform cyber-security attacks.

Illustrated in Figure 2b, our “attack enforcers” are placed
in the conceptual “machine-in-the-middle” (MITM) configu-
ration, where environment inputs can be altered to trick the
controller, and outputs can be altered to trick the environment.
We follow this as we design jamming, injection, and alteration
attacks for drones in a delivery context.

C. Motivating Example: Delivery Drone

We consider a delivery drone, with the pre-programmed
procedures for the following missions:
• Flight test: the drone takes off from it’s home location,

climbs to a set altitude where it hovers until the base
station requests it to land.

• Relocation: the drone climbs to altitude, flies to set
coordinates, and then descends to it’s new home base.

• Delivery: the drone climbs to altitude, flies to a set
location, descends to drop off a package, and then returns
to the home location.

We implement these missions in a software-in-the-loop
(SITL) simulator, shown in Figure 3, for ArduPilot, an open
source drone control software platform. This software can run
on a range of open and closed source drone hardware, with
the simulator provided to test off the device, prior to live tests.
To communicate with ArduPilot we use DroneKit, an open
source abstraction layer in Python. We insert attack enforcers
in this communication between the drone and base station
as illustrated in Figure 4. From the attacker’s perspective,



Figure 3. ArduPilot software-in-the-loop simulator for quadcopter drone

we assume a “grey box” system as the inputs and outputs
are known and the missions are also known, but the internal
workings of both drone and controller remain unknown.

Figure 4. Drone simulation system

III. PRELIMINARIES AND NOTATIONS

We consider Cyber-Physical Systems to have finite ordered
sets of valued input channels I = {i1, i2, . . . in} and valued
output channels O = {o1,o2, . . .on}. For a variable (resp.
channel) v, Dv denotes its domain, and for a finite ordered
set of variables V = {v1, . . . ,vn

}
, DV is the product domain

Dv1 ×·· ·×Dvn .
Consider n∈N, Bn denotes the domain of the finite ordered

set of Boolean {b1, · · · ,bn}. A valuation of the variables in V
is a mapping ν which maps every variable v ∈ V to a value
ν
(
v
)

in Dv.
A finite (resp. infinite) word over DC (where C = I∪O) is

a finite (resp. infinite) sequence σ = η1 ·η2 · · ·ηn where ∀i ∈
[1,n] : ηi is a tuple of values of variables in C = I ∪O. For
convenience where necessary, each element ηi is considered to
be a pair (ηI ,ηO), where ηI is a valuation of all the variables
in I, and ηO is a valuation of all the variables in O. The set of
finite (resp. infinite) words over DC is denoted by D∗C (resp.
Dω

C ). The length of a finite word σ is n, denoted |σ|. The
empty word over DC is denoted by εC, or ε when clear from
the context. D+

C denotes D∗C \{ε}. The concatenation of two
words σ and σ′ is denoted by σ ·σ′. A word σ′ is a prefix of a
word σ, denoted as σ′ ≼ σ, whenever there exists a word σ′′

such that σ = σ′ ·σ′′; conversely σ is said to be an extension
of σ′.

Given an input-output word σ=(x1,y1)·(x2,y2) · · ·(xn,yn)∈
D∗C, the input word obtained from σ is denoted by σI where
σI = x1 · x2 · · ·xn ∈ D∗I is the projection on inputs ignoring
outputs. Similarly, the output word obtained from σ is denoted
by σO where σO = y1 · y2 · · ·yn ∈ D∗O is the projection on
outputs.

Given a word σ and i ∈ [1, |σ|], σ[i] denotes the element at
index i in σ. Given a word σ and two integers i, j s.t. 1 ≤
i ≤ j ≤ |σ|, the subword of σ from index i to j is denoted
as σ[i··· j]. Given an n-tuple of symbols e = (e1, · · · ,en), for i ∈
[1,n], πi(e) = ei denotes the projection of e on its i-th element.
The operator πi is naturally extended to words of n-tuples of
symbols to produce the word formed by the concatenation of
the projections on the ith element of each tuple.

In every tick, the EI manager first examines the input from
the environment (in this context, the drone), and later the
output from the controller (the base station). The overall output
of the EI manager in every tick is an input-output event. We
introduce function IO which is used to treat an input word
σI ∈D∗I , and an output word σO ∈D∗O as in input-output word
in (DI×DO)

∗.
Function IO: Given an input word σI = x1 · x2 · · ·xn ∈ D∗I

and an output word σO = y1 · y2 · · ·yn ∈ D∗O s.t. |σi| == |σo|,
IO(σi,σo) = (x1,y1) · (x2,y2) · · ·(xn,yn).

A property ϕ over C defines a set L (ϕ)⊆D∗C. A program
P |= ϕ iff L (P )⊆L (ϕ). In this paper, properties are formally
defined as VDTA.

A. Policy Specification

We adopt Valued Discrete Timed Automata (VDTA), a
language for expressing policies over cyber-physical sys-
tems [24]. A VDTA can be seen as an automaton with a finite
set of locations, a finite set of discrete clocks used to represent
time evolution, and external input (resp. output channels)
called “external variables” which are used for representing
system data. They model the data from the monitored system
(resp. environment) read from the input (resp.) channels in
every tick. In a VDTA, time evolves synchronously: that is,
the system executes as a series of discrete logical ticks where
each tick takes exactly one transition [25]. In the semantics
of VDTA, each transition will be associated with values of
external variables. Compared with Discrete Timed Automata
(DTA), which have only boolean inputs and outputs, the
increased expressiveness of valued external variables in VDTA
enables more sophisticated policies to be created.

B. VDTA Syntax and Semantics

Let X = {x1, . . . ,xk} be a finite set of integer variables
representing discrete clocks. A valuation for a clock variable
x of X is an element of N, that is a function from x to N. The
set of valuations for the set of clocks X is denoted by χ. For
χ ∈NX , χ+1 (which captures the ticking of the digital clock)
is the valuation assigning χ(x)+ 1 to each clock variable x
of X . Given a set of clock variables X ′ ⊆ X , χ [X ′← 0] is the
valuation of clock variables χ where all the clock variables in
X ′ are assigned to 0.



Definition III.1 (Syntax of VDTAs). An VDTA is a tuple
A = (L, l0,F,X , I,O,∆) where:

• L is a finite non-empty set of locations, with l0 ∈ L the initial
location, and F ⊆ L the set of active locations1;
• X is a finite set of discrete clocks;
• I is the set of input channels;
• O is the set of output channels;
• ∆ is a finite set of transitions, and each transition t ∈ ∆ is a

tuple
(
l,G,AX , l′

)
also written

l
G(I,O),AX

−−−−−−→ l′ such that,
• l, l′ ∈ L are respectively the origin and target locations of

the transition;
• G = GD∧GX is the guard where

- GD = GI ∧GO where
- GI is a computable predicate over inputs i.e., conjunc-

tion of constraints of the form f 1(I)♯ f 2(I), where f 1
and f 2 are computable functions over input variables,
and ♯ ∈ {<,≤,=,≥,>, ̸=};

- GO is a computable predicate over inputs and out-
puts i.e., conjunction of constraints of the form
f 1(I∪O)♯ f 2(I∪O), where f 1 and f 2 are com-
putable functions over input and output variables (but
requiring at least one of the output variables as an
argument), and ♯ ∈ {<,≤,=,≥,>, ̸=};

- GX is a clock constraint over X defined as conjunctions
of constraints of the form x♯c,x♯ f 1(I) ,x♯ f 2(I∪O)
where x ∈ X and and c ∈ N , f 1(I) is a computable
predicate over input variables, f 2(I∪O) (requiring at
least one of the output variables as an argument) is a
computable predicate over input and output variables,
and ♯ ∈ {<,≤,=,≥,>, ̸=};

• AX ⊆ X is the set of clocks to be reset.

We now provide two examples to demonstrate valued vari-
ables and discrete clocks respectively in VDTA.

Example III.2 (VDTA with valued variables). The signal
alteration attack VDTA ϕAlterLocation in Figure 5a has a set
of locations L = {l0, l1, lv}, with active locations F = {l0, l1}.
l0 is also the initial location. The VDTA has the set of input
variables I = {CONNECTED} of type Boolean and the set
of output variables O = {CONFIG,ALT,NORTH,EAST} of
types {Boolean, unsigned, integer, integer} respectively. In an
VDTA, a transition can have guards involving input/output
variables, clocks, and functions over input/output variables.
For example, the transition from l1 to lv happens when
CONFIG = true and any of ALT, NORTH, and EAST are
not equal to 10, 20, or 20 respectively. This implies that the
drone is being configured by the base-station to values that
differ from the attackers desire.

1Locations are usually termed accepting or non-accepting however in our
attacker modelling case attacks are active in accepting locations, and if in a
non-accepting location, the attack has failed.

Example III.3 (VDTA with discrete clock). The signal in-
jection attack VDTA ϕIn jectLand in Figure 5b has a set of
locations L = {l0, l1, lv}, with active locations F = {l0, l1}.
l0 is also the initial location. The policy has a set of discrete
clocks X = {t}. The VDTA has an empty set of input variables
I = {} as is an output policy, and the set of output variables
O = {LAND} of type Boolean. In this VDTA, the transitions
can have guards involving output variables and clocks. For
example, the transition from l0 to lv happens when the LAND
signal is f alse and clock t ≥ TA. The attack time, TA, is the
time after which the signal LAND is required to keep the attack
active, hence the transition to lv if LAND is not present, and
l1 if LAND is present.

1) Semantics for VDTA: Let A = (L, l0,F,X , I,O,∆) be a
VDTA. The semantics of A is a timed transition system, where
a state consists of a location, and valuations of clocks X . Each
transition is associated with values of external variables in C.

Definition III.4 (Semantics of VDTAs). The semantics of A
is a timed transition system [[A ]] = (Q,q0,QF ,Γ,→), defined
as follows:
• Q = L×NX , is the set of states of the form q = (l,χ) where

l ∈ L is a location, χ is a valuation of clocks;
• Q0 = {

(
l0,χ[X←0]

)
} is the set of initial states;

• QF = F×NX is the set of active states;
• Γ = {η | η ∈DC} is the set of transition labels;
• →⊆ Q× Γ×Q the transition relation is the smallest set

of transitions of the form (l,χ⟩ −→ η⟨l′,χ′) such that
∃
(
l,G,AX , l′

)
∈ ∆, with GX (χ+1,η)∧GD (η) evaluating to

true, and χ′ = (χ+1) [AX ← 0].

A run ρ of [[A ]] from a state q ∈ Q over a trace w =

η1 · η2 · · ·ηn is a sequence of moves in [[A ]]: ρ = q
η1−→

q1 · · ·qn−1
ηn−→ qn, for some n∈N. A run is accepted if it starts

from the initial state q0 ∈ Q and ends in an accepted state
qn ∈ QF .

Definition III.5 (Deterministic (complete) VDTA). A VDTA
A = (L, l0,F,X , I,O,∆) with its semantics [[A ]] is said to be
a deterministic VDTA whenever for any location l and any
two distinct transitions

(
l,g1,AX

1 , l
′
1
)
∈ ∆ and

(
l,g2,AX

2 , l
′
2
)
∈ ∆

with the same source l, the conjunction of guards g1 ∧ g2 is
unsatisfiable. A is complete whenever for any location l ∈ L the
disjunction of the guards of the transitions leaving l evaluates
to true.

C. VDTA Enforcers

An enforcer monitors and corrects both the input and output
of a system according to a given policy ϕ. The details of how
the bidirectional enforcement mechanism for VDTA is defined
and algorithms of how to synthesise an enforcer from a policy
specified as VDTA are provided in [12], [26]. Here we model
drone attacks of jamming, injection, and alteration, as VDTA.
We can synthesise enforcers using these exiting approaches,
which are then placed between the environment and controller,
as illustrated in Figure 2b. We term these as attack enforcers.



lv

l1l0
CONNECTED/

/!CONFIG

/CONFIG &&
ALT = 10 &&

NORTH = 20 &&
EAST = 20

/CONFIG &&
(ALT ̸= 10 ||

NORTH ̸= 20 ||
EAST ̸= 20)

true

(a) Policy ϕAlterLocation defines an alteration attack of
distances to travel North and South, and the altitude
to fly at.

lv

l0 l1

true
(t < TA)

LAND
t ≥ TA

!LAND
t ≥ TA

true

true

(b) Policy ϕIn jectLand
defines an injection attack of
the LAND signal

lv

l0 l1

!{}
(t < TS |t > TE)

{}
TS ≤ t ≤ TE

!{}
TS ≤ t ≤ TE

{}
TS ≤ t ≤ TE

!{}
TS ≤ t ≤ TE

true
t > TE

true

(c) Policy ϕJamAllTime defines an attack which jams all
control and status signals for a specified time period

Figure 5. A range of VDTA policies which define attacks on the drone system

Table I
ATTACK ENFORCER TRACE FOR ϕIn jectLand

Tick Controller
Output Clock t t ≤ TA

Enforced
Output Transitions

0 {} 0 true {} l0
1 {} 1 true {} l0→ l0
2 {} 2 true {} l0→ l0
3 {} 3 f alse {LAND} l0→ l1

The enforcer must keep the policy satisfied, to ensure the
attack remains active, and so it will examine the updated
external variables (input and output variables) each tick, and
will transform any that are non-accepting that would cause the
attack to fail.

Example III.6 (VDTA Attack Enforcer). Consider the VDTA
policy explained in Example III.3 and illustrated in Figure 5b.
This policy defines an injection attack which occurs when the
policy clock reaches TA. The synthesised attack enforcer would,
to ensure the policy remains active, ensure the output LAND
was true before or as the clock reaches TA. An example trace,
where TA = 3, is provided in Table I where the controller does
not provide the output in tick 3, so the enforcer injects it.

In the following section, we introduce VDTA attack policies
for drones and provide an example of bidirectional enforce-
ment.

IV. DRONE ATTACKS WITH RUNTIME ENFORCERS

A. Individual Attacks

As discussed earlier, attacks on drone systems can be
grouped into: jamming, injection, and alteration of drone
status and/or base station control signals. We present policies
that produce time based jamming, time based injection, and
persistent alteration attacks. Attack parameters are able to be
set by the attacker to achieve their desired impact.

1) Jamming: In Figure 5c the policy ϕJamAllTime is illus-
trated. Designed to jam all control and status signals between
the drone and base station, this policy consists of 3 locations;
l0 and l1 active locations, and lv a failed trap location. A
discrete clock, t, is used to start and end the attack. This

policy is defined with empty input output ({} where Boolean
variables are f alse and valued variables are 0) and any input
or output (!{} where one or more Boolean variables is true
and/or one or more valued variable is not 0) . Starting in l0 the
policy accepts any control or status signal (!{}) while the clock
is less than or greater than the defined start (TS) and end (TE )
times. When the clock, t, is greater than or equal to the start
time (TS), any input or output (!{}) would cause a transition
to the violation location, lv, and an empty input output ({})
results in a transition to l1. In l1, any input or output (!{})
causes a transition to the violation location, unless the clock
is greater than the end time (TE ), when the transition back to
l0 is taken.

To avoid transitioning to the violation location, the synthe-
sised enforcer will suppress any input or output signal from
being passed between the base station and drone between the
start and stop times. This behaves as a signal jammer active
between the start TS and stop times TE .

Example IV.1 (Bidirectional VDTA Attack Enforcer). Con-
sider the Policy ϕJamAllTime VDTA explained above and illus-
trated in Figure 5c. An example trace, where TS = 2 and
TE = 3, is provided in Table II where signals from the base
station and drone are suppressed.

2) Injection: In Figure 6a the policy ϕIn jectAbort is illus-
trated. This policy consists of two active locations, l0 and l1,
and one violating trap location, lv. There are no input channels
I = {} and output channel O = {ABORT} of type boolean.
The policy starts in l0, where any event while the clock, t,
is less than the attack time, causes the self loop to remain in
l0. When the clock, t, is greater than or equal to the attack
time (TA), the absence of the ABORT signal would cause a
transition to the violation location, lv. Alternatively, with the
presence of the ABORT signal, the policy would transition to
the active location, l1.

When the clock, t, reaches the attack time (TA), if not present
from the base station, the enforcer will inject the ABORT
signal, to prevent transition to the violation location. This
behaves as an injection attack which occurs at a specified time.

3) Alteration: In Figure 6b the policy ϕAlterAltitude is illus-
trated. This simple policy consists of a single active location



Table II
ATTACK ENFORCER TRACE FOR ϕJamAllTime

Tick Drone Input Clock t t < TS t > TE Enforced Input Base Station Output Enforced Output Transitions
0 {} 0 true f alse {} {} {} l0
1 {CONNECTED} 1 true f alse {CONNECTED} {CONFIG, ALT= 10} {CONFIG, ALT= 10} l0→ l0
2 {} 2 f alse f alse {} {RUN} {} l0→ l1
3 {} 3 f alse f alse {} {RUN} {} l1→ l1
4 {} 4 f alse true {} {RUN} {RUN} l1→ l0

lv

l0 l1

true
(t < TA)

ABORT
t ≥ TA

!ABORT
t ≥ TA

true

true

(a) Policy ϕIn jectAbort defines an
attack which injects an abort signal
after a specified time

lv

l0

!CONFIG

CONFIG &&
ALT = 15

CONFIG &&
ALT ̸= 15

true

(b) Policy ϕAlterAltitude
defines a configuration alter-
ation attack

Figure 6. Injection and alteration attacks expressed as VDTA

l0, and a violating trap location lv. There are no input chan-
nels, I = {}, and the output channels O = {CONFIG,ALT}
which are of types {Boolean, unsigned integer}. Initially in
the active location l0, the policy takes self loops when the
CONFIG signal is absent, or when the CONFIG signal is
present and ALT is present with a value of 15. This reflects the
desire for the altitude to be set to 15 meters. If the CONFIG
signal is present and the value is not equal to 15, the policy
would transition to the violation location lv.

To avoid the transition to the violation location the syn-
thesised enforcer would set the ALT value to 15 whenever it
is present. This behaves as a man-in-the-middle attack where
any ALT signal is set to a value of 15, resulting in the drone
operating at 15 meters above ground altitude.

V. ENFORCER INTERCHANGE FOR SOPHISTICATED
ATTACKS

A. Problem Definition

In the previous section, we introduced a set of attack
policies which alone, are able to interfere with the drone
system, however are limited to a single attack enforcer at any
time. If individual attacks were combined by some means, far
more sophisticated attacks could be launched. These should
incorporate the status of drone and controller allowing a range
of attacks for different missions to be combined.

In this section, we introduce enforcer interchange to launch
complex attacks. First, individual attacks must be enabled/-
suspended, so we extend VDTA enforcers to be suspendable.

Second, we introduce enforcer interchange, to combine sus-
pendable VDTA enforcers.

B. Activating/Suspending Attack Enforcers Dynamically
In order to choreograph complex attacks, the attack en-

forcers need to be activated and suspended during system
operation based on the desired attack and the current status
of the drone and base station.

To evaluate guards, increment discrete clocks, and take
any location transitions, the VDTA must be activated via an
activation signal. If not activated, the VDTA is suspended,
and therefore it’s location and any clocks are frozen and do
not increment. In plain language, the enforcer attack is turned
off, not enforcing inputs or outputs. This is further elaborated
using Remark V.1.

Remark V.1. As discussed, attack policies need to be activat-
ed/suspended dynamically. Here we describe the mechanism
for this. Let ϕAlterLocation be the policy for a location attack,
as introduced in Example III.2 Let x ∈DI denote the input in
a particular tick.
• If the attack will be active (not suspended) in that

particular tick, the state of the policy ϕAlterLocation will be
updated by consuming the event (x,y) ∈ DC, evaluating
the transition relation ∆, and updating the location as
appropriate.

• If the attack will be suspended in a given tick, for
updating of the policy ϕAlterLocation w.r.t. the input x ∈DI
that is observed in that tick, the output of the attack policy
in that tick is considered to be invalid/empty (denoted as
!α). For every location in ϕAlterLocation , for all x ∈DI we
consider implicit self transitions with event (!α), allowing
the policy to remain in the same location when it is
suspended.

Thus, the output domain DO will be will be considered as
DO∪{!α}.

Example V.2. An example of a suspendable policy is pre-
sented in Figure 7. This is a modified location altering attack
ϕAlterLocation presented first in Figure 5a. If the policy is in
location l0, while the policy is suspended (!α), the input
CONNECTED is ignored. As a result, the implicit self loop
(shown as a dashed line) in l0 is taken instead of advancing
to location l1.

C. Enforcer Interchange (EI)
We consider the system (drone and base station) as a grey-

box, since the EI Manager is designed based on the missions
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Figure 7. Suspendable ϕAlterLocation

Figure 8. Context of EI Manager

the drone is configured for, and I/O signals are known and
understood, but the internals of the drone and base station are
unknown.

For the synthesis of the EI Manager, the user (a malicious
actor) provides a set of policies, one policy per attack defined
as VDTA, and a further policy specifying an attack manager,
also defined as a VDTA. The system diagram for an EI
Manager is illustrated in Figure 8.

Given a set of attack policies denoted as ϕA = {ϕ1, · · · ,ϕn}
where n is the number of attacks, ∀i ∈ 1 · · ·n : ϕi ⊆D∗C is the
policy corresponding to attack i.

Definition V.3 (Attack Manager). Given ϕM specifying the
attack manager defined as a VDTA AϕM = (L, l0,F,X , I,O,∆)
with semantics (Q,q0,QF ,Γ,→), extended with A, an n-tuple
of Boolean activation labels in each location. The attack
manager is AMϕm : D∗C→ B1×B2 · · ·×Bn. Let σ ∈ (DC)

∗, and
let q ∈ Q be the state reached in the VDTA AMϕm upon σ,
AMϕm(σ) = (α1,α2, · · · ,αn), where Aq = (α1,α2, · · · ,αn) is
the Boolean n-tuple in the location corresponding to state q.

The attack manager executes as defined in Algorithm 1. In
every reaction (tick), the environment input to the EI Manager
is x ∈DI .

The EI Manager reads the input channels x (i.e., input from

Algorithm 1 Enforcer Interchange Manager

n← number of enforcers
qM ← qM0
α← AqM0

tM ← 0
while true do

x← read input()
for E j

i where ∀ j ∈ 1 · · ·n do // Input Enforcement
xcE j

i
← Ej

i

(
xE j

i
,α j

)
end for
controller (xc)
y← read output()
for E j

o where ∀ j ∈ 1 · · ·n do // Output Enforcement
ycE j

o
← Ej

o

(
xcE j

o
,yE j

o
,α j

)
end for
for E j where ∀ j ∈ 1 · · ·n do // Update Enforcer states

if α j then
qE j ← q′′E j where qE j

(xc,yc)−−−→ q′′E j

end if
end for
// Update Attack Manager state

qM ← q′′M where qM
(xc,yc)−−−→ q′′M

α← AqM // Update activation tuple
tM ← tM +1 // Increment clocks
environment(yc)

end while

the environment) along the internal input bus, appropriate
channels are diverted to relevant enforcers (synthesised as
per [12], [26]). The attack manager AMϕm provides the set
of Boolean activate signals (Aq = (α1, · · · ,αn)) enabling/sus-
pending the appropriate attack enforcers based on the location
reached in ϕM . Attack policies may be defined for subsets of
the complete set of input/output channels such that multiple
attacks can be active simultaneously and enforcers will not
edit shared signals.

Input enforcers then execute with the inputs xEi ⊆ x that are
of relevance for that particular policy/enforcer. Any suspended
enforcer(s) return the input unaltered. Activated enforcers
perform any edits necessary to keep their attack from fail-
ing, as explained in Section III-C. Once all n input attack
enforcers have processed the input, the input bus now carries
compromised input xc which is read by the attack manager
and exposed to the controller.

The controller executes, and produces the output (y) ∈DO
given input xc. The output y is taken along the output bus.
The unchanged set of activate signals (Aq) is forwarded to
the output attack enforcers. Again, similarly to input attacks,
activated output enforcers execute with relevant outputs yEi ⊆
y, and perform any edits necessary to keep their attack from
failing. With all n output attack enforcers having executed,
the output bus carries compromised output yc which is read
by the attack manager, and exposed to the environment. The
final input-output event for the tick is then (xc, yc) which then



updates the attack manager state and the activation signals.

Remark V.4 (Composition for Simultaneously Active En-
forcers). Figure 8 illustrates the attack enforcers share input
and output buses, however, the attack policies and attack
manager must be designed such that any simultaneously active
enforcers have independent input/output channels. This is to
ensure they do not both enforce a signal simultaneously. Note
that it can be desirable for some attack policies to share input
and output channels, but the attack enforcers cannot be active
simultaneously. The attack manager policy allows different
enforcers to be active for different situations. In future work,
we will assess enforcer interchange separately as a method
of composition where simultaneously active enforcers alter
shared channels.

Example V.5. Consider the drone system, programmed for
three missions (flight test, relocation, and delivery). In Figure 9
we illustrate the attack manager policy which enables and
disables attacks to interfere with each mission.

The policy consists of locations L = {Idle, Conn, Alt, Loc,
Climb, Jam, AtLoc, Land, Land2, StealD, StealP, End} with
initial location l0 = Idle, and clocks, X = {t}. The policy is
defined over input channels x = {CONNECTED, AT ALT,
AT LOC, LANDED} of types {boolean, boolean, boolean,
boolean} which refer to {drone connected, drone at configured
altitude, drone at configured location, drone landed}.

Output channels y = {MISSION, RUN, LAND, RETURN,
END} of types {integer, boolean, boolean, boolean, boolean}
which refer to {configure for mission (1) flight test (2) reloa-
tion or (3) delivery, execute the configured mission, execute
landing, return to base, end mission}.

Five attack policies are managed by this attack manager,
{AlterAltitude, AlterLocation, JamLand, InjectLand, Jam-
Abort}. These attack policies are defined in earlier sections.
Activation tuples are AAlt ={True, False, False, False, False},
ALoc ={False, True, False, False, False}, AJam ={False, False,
True, False, False}, AAtLoc ={False, False, False, True, True},
in all other locations A ={False, False, False, False, False}.

If the base station requests a flight test, MISSION= 1, the
attack manager will firstly activate the attack which alters the
configured altitude and then will jam signals once the drone
reaches altitude until the clock, t, reaches JamTime.

If the base station then requests a delivery, MISSION= 2,
the manager will activate the location attack which sets the
drone to fly to the attacker’s location where the package is
intercepted. Once the drone reaches the location, to ensure it
lands and base station doesn’t abort the mission, the attacks
to jam the ABORT signal and inject the LAND signal are
activated. The drone will then deliver the package to the
attacker.

If the base station then requests the drone relocates,
MISSION= 3, the attack manager will follow the same actions
as for MISSION= 2, though this time the drone will not return
to base and so could be stolen by the attacker.

Idle Conn

Alt

αAlterAltitude

Loc

αAlterLocation

Climb

Jam

αJamLand

Land

AtLoc

αInjectLand
αJamAbort

Land2

StealP

StealD

End

CONN./

CONN./
MISSION = 1

CONN./
MISSION = 2 or
MISSION = 3

/MISSION = 1

/MISSION = 2 or
MISSION = 3

/RUN

/RUN

AT ALT/

t ≤
JamTime

/LAND
t > JamTime

LANDED/

AT LOC/

/LAND

/RETURN

LANDED/

/END
true

/END

true

1

Figure 9. An enforcer interchange attack manager policy which choreographs
attacks to interfere with take off, intercept packages, and steal a drone.

VI. RESULTS

To evaluate the impact of our enforcer attacks and the
combined EI attacks, we consider the quadcopter simulator,
introduced in Section II-C, tasked with one of three missions:
flight test, delivery, and relocation. When evaluating individual
attacks we use the flight test mission and consider the profile
of the drone’s altitude over time. For the combined EI attack,
we see all three missions execute and consider the profile of
altitude, longitude, and latitude.

A. Enforcer Attacks

1) Flight Test Profile: As a baseline to compare our indi-
vidual attacks, we use the flight test mission, where the drone
is instructed to climb to a defined altitude then descend to
the ground. For the results the configured altitude is 10m.
The chart in Figure 10a illustrates the altitude (meters above
ground level) across time as the drone climbs and then
descends.

2) Jamming Attack: In Section 5c we introduced
ϕJamAllTime which blocks all control and status signals for a
defined time period. As illustrated in Figure 10b the drone
remains at 10 meters altitude for a longer duration while the
attack is active. The base station’s control signal, requesting
the drone to land, is unable to reach the drone while the attack
is active. In this example, only a mild inconvenience is likely,
but extending the duration of the attack could result in the
drone running out of battery and crash landing.

3) Injection Attack: In Section 6a we introduced
ϕIn jectAbort which injects a control signal to the drone
requesting it to abort the mission at a defined time. As
illustrated in Figure 10c the flight test mission is not



(a) Chart of altitude vs time for a flight test mission (b) With a jamming attack (ϕJamAllTime )

(c) With a control signal injection (ϕIn jectAbort ) attack (d) With a control signal alteration (ϕAlterAltitude ) attack.

Figure 10. Charts of altitude vs time for a flight test mission without attacks and then with various attacks. Note the different Y axis scale for sub figure (d).

accomplished as the drone doesn’t reach full altitude and
returns to the ground prematurely. This is an example attack
that may be used on a rogue drone, to ground it before it can
execute it’s malicious mission.

4) Alteration Attack: In Section 6b we introduced
ϕAlterAltitude which modifies the configuration control signal
to the drone setting the altitude to 15 meters above ground
level. As illustrated in Figure 10d the drone climbs above
the expected altitude (of 10m), this could breach airspace
clearances and conflict with other air traffic.

B. Enforcer Interchange Attacks

We now consider a sophisticated attack using our Enforcer
Interchange policy illustrated in Figure 8. In these results,
the drone is sequentially requested to execute a flight test,
a delivery, and a relocation.

This requires five attack enforcers: AlterAltitude, Alter-
Location, JamLand, InjectLand, and JamAbort. The policy for
AlterAltitude is previously defined in Figure 6b. The policy
for AlterLocation is similar to AlterAltitude additionally with
values defined for the distance North and East to travel. The
policies for JamLand and JamAbort follow the structure of
JamAll, as previously illustrated in Figure 5c, but only violate
when the signal LAND or respectively ABORT are present.
The policy for InjectLand follows the structure of InjectAbort,
illustrated in Figure 6a, with the LAND signal substituted for
the ABORT signal.

1) Altitude Profile: With no attacks present the drone
executes the requested flight test (to 10m), delivery (at 20m
altitude), and relation (at 15m altitude). This is illustrated in
the altitude over time profile in Figure 11. The second and
third peaks represent the drone’s travel to and from the delivery
location.

With the enforcer interchange attack manager present, the
drone’s altitude profile is altered. The AlterAltitude attack
sets the altitude to 5m instead of the requested 10m. The

Figure 11. Charts of altitude vs time for three consecutive missions without
and with EI attacks

AlterLocation attack sets the altitude to 10m instead of the
requested 20m (for delivery missions) and 15m (for relocation
missions). This is illustrated in Figure ??. Note the axes scales
are matched to Figure 11, which shows the lower altitudes and
a faster completion of the missions.

2) Location Profile: The delivery and relocation missions
result in the drone travelling to different geographical lo-
cations. We illustrate this in Figure 12. These results are
presented in latitude and longitude as the drone simulator uses
real world mapping.

Without attacks active the drone first travels to the South-
East delivery location, then returns before travelling to the due
West location to relocate. With the attack manager present, the
locations are replaced with the attackers location, this results
in both the delivery and relocation travelling to the North-East
where the attacker is positioned.

VII. RELATED WORK

Modelling cyber security attacks is a broad field with
various high level approaches [27] to understand the attacks.
The attack modelling taxonomy in [28] provides an approach
more focused on the cross domain impacts of exploiting CPS
systems. These approaches are high level and therefore do not



Figure 12. Chart of position for three consecutive missions.

consider implementing and demonstrating such attacks. Our
work is a level lower, as we model specific attacks, identified
during high level modelling. Additionally, our formal approach
can be synthesised to demonstrate the attack and it’s impact
on a target system.

The aeronautical industry is safety critical. The application
of runtime assurance to turbofan engines is considered by
NASA in [29] and to autonomous aeronautical systems in [30].
The drone industry is inconsistently regulated, and the high
overhead of formal validation can be avoided by system
designers. The result is an industry with many exploitable
vulnerabilities [6], which are found in examples like the
analysis of a DJI drone in [5].

Existing work in runtime assurance [9], specifically in run-
time enforcement, comprises of non-reactive techniques [21]–
[23], [31], which are unsuitable for our drone application. Our
work is related to the reactive class of runtime enforcement
techniques [12], [32], [33].

These rely on low-overhead wrappers, which mediate be-
tween the environment and the controller of a reactive system,
to ensure that the system operates safely at all times by
ensuring that all user specified policies hold. Whenever the
input and output of the system leads to non-compliance, the
enforcer alters the input / output streams appropriately.

Early enforcers for reactive systems [32] were uni-
directional. More recently, bi-directional enforcement has been
developed for both industrial processes [24] and medical
devices [12].

Our inspiration comes from edit-automata [10], which per-
forms suppression, insertion, and editing actions for streams,
which are generated by transformational systems. These ac-
tions are analogous to drone attack actions such as jamming,
injection, and alteration. However, edit automata are not
expressive enough for complex drone attack policies, as they

are not suitable for CPS. In particular, they lack any notion of
timing and the need to ensure that the reactivity of the system
could be attacked. Also, runtime enforcement, in general, has
been used for ensuring safe system operation rather than being
used for studying the ethical hacking of drones using formal
methods.

Hence, our work considers the flip-side of runtime en-
forcement, using malicious actors. To be able to model many
complex attack scenarios, we propose two innovations, which
are lacking in Runtime Enforcement (RE) literature. First, we
use an expressive automata called VDTA to express attack
policies. We then generate a set of enforcers from these
policies, where the enforcers are composed using a global
policy, called the attack manager policy. This is used for
suitably orchestrating enforcers to launch complex attacks.
For performing this, we use, for the first time, the concept
of suspension from synchronous languages [34], [35]. This
generalises the usual enforcement actions of known enforcers
such as editing. Hence, we term the current framework en-
forcer interchange.

Enforcer interchange is also inspired by earlier concepts
in synchronous programming such as Mode Automata [36]
and real-time systems i.e., Modechart [37]. Mode Automata,
however, lacks a direct notion of time unlike VDTA. Also,
Mode Automata and Modechart have no concept of activa-
tion/suspension. In our work, the extension of VDTA with the
activation/suspension effectively freezes a subset of the attack
policies in any given state.

VIII. CONCLUSIONS

The cyber-security of unmanned aerial drones is of increas-
ing concern [6]. However, a formal framework for attacker
modelling and launching of attacks is lacking in the literature.
To this end, we leverage runtime enforcement, combined with
the idea of suspension from synchronous programming to
develop a new formal framework.

We introduce the enforcer interchange framework. This
allows us to create sophisticated and adaptive attacks on
drones. We demonstrate this using a drone simulator that
is able to be tasked with a range of missions. Individual
runtime enforcer attacks were presented, then combined using
an enforcer interchange manager which used different attacks
based on the situation and mission. Future attacks can be
choreographed with different enforcer interchange managers,
making use of, and extending, the suite of attack models. This
provides a formal framework, for the first time, for validating
drone systems against malicious interference by leveraging
formal methods.

This work has some limitations. First, while we believe that
enforcer interchange generalises known RE frameworks for
CPS which are limited to some form of editing actions only,
we are yet to formally study the power of this relative to other
classes of automata such as edit automata. Second, we are yet
to study defense mechanisms for mitigation.



SOURCE ACCESS

The source codes for the drone communication case
study, including the attack enforcers and enforcer interchange
manager, are available online under the MIT license at
https://github.com/PRETgroup/drone-attack-enforcers.
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