
Real-Time Scheduling of Machine Learning
Operations on Heterogeneous Neuromorphic SoC

Anup Das
Electrical and Computer Engineering

Drexel University
Philadelphia, USA

anup.das@drexel.edu

Abstract—Neuromorphic Systems-on-Chip (NSoCs) are be-
coming heterogeneous by integrating general-purpose processors
(GPPs) and neural processing units (NPUs) on the same SoC.
For embedded systems, an NSoC may need to execute user
applications built using a variety of machine learning models.
We propose a real-time scheduler, called PRISM, which can
schedule machine learning models on a heterogeneous NSoC
either individually or concurrently to improve their system
performance. PRISM consists of the following four key steps.
First, it constructs an interprocessor communication (IPC) graph
of a machine learning model from a mapping and a self-timed
schedule. Second, it creates a transaction order for the communi-
cation actors and embeds this order into the IPC graph. Third, it
schedules the graph on an NSoC by overlapping communication
with the computation. Finally, it uses a Hill Climbing heuristic
to explore the design space of mapping operations on GPPs and
NPUs to improve the performance. Unlike existing schedulers
which use only the NPUs of an NSoC, PRISM improves per-
formance by enabling batch, pipeline, and operation parallelism
via exploiting a platform’s heterogeneity. For use-cases with
concurrent applications, PRISM uses a heuristic resource sharing
strategy and a non-preemptive scheduling to reduce the expected
wait time before concurrent operations can be scheduled on
contending resources. Our extensive evaluations with 20 machine
learning workloads show that PRISM significantly improves the
performance per watt for both individual applications and use-
cases when compared to state-of-the-art schedulers.

Index Terms—neuromorphic system-on-chip (NSoC), spiking
deep convolution neural network (SDCNN), interprocessor com-
munication (IPC), hill climbing, self-timed execution.

I. INTRODUCTION

EVENT-driven neuromorphic devices are a promising so-
lution to accelerate Spiking Deep Convolutional Neural

Networks (SDCNNs) [1]–[3]. These are a type of Spiking
Neural Networks (SNNs) that replicate the neural architecture
of a conventional CNN with two major differences [4]. First,
layers of an SDCNN communicate by exchanging spikes
instead of tensors. Second, each layer implements the leaky
integrate-and-fire function instead of a sigmoidal function
(Tanh or ReLU). Due to these differences, converting a CNN
to an equivalent SDCNN is not straightforward, and it requires
layer-specific optimizations [5]–[10].

Our objective is to schedule SDCNNs on a neuromorphic
device that consists of neural processing units (NPUs) to ac-
celerate operations such as matrix multiplication, average/max
pooling, batch normalization, layer flattening, residual com-
putation, and concatenation [11]–[15]. These devices are now

integrated with general purpose processors (GPPs) and other
hardware subsystems on the same system-on-chip (SoC) to
implement a complete system. Neuromorphic systems-on-chip
(NSoCs) are becoming the key enabler for embedded systems
to accelerate machine learning-based user applications by
scheduling their operations on NPUs. Scheduling consists of
three steps — mapping, which involves assigning operations
to different NPUs, ordering, which involves determining the
execution order of operations and their communication, and
timing, which involves specifying the precise start time of an
operation on an NPU [16]–[20].

Table I reports event-driven NSoC platforms (top four rows)
and their system software to schedule SDCNN operations.1 It
also reports a few standalone neuromorphic devices and their
software (bottom four rows). These devices are not currently
part of any SoC but reported here for completeness.

TABLE I
RECENTLY INTRODUCED NSOC PLATFORMS.

NSoC # NPUs GPPs Software

Loihi [24] 128 3 x86 CPUs LAVA [25]

Akida [26] 80 1 x86 CPU MetaTF [27]

GrAI [28] 144 2 ARM CPUs GrAIFlow [28]

SPECK [29] > 16 1 GPU CTXCTL [29]

SpiNNaker [30] 144 – PACMAN [31]

µBrain [32] 64 – SentryOS [32]

Tianji [33] 6 – NEUTRAMS [34]

DYNAPs [35] 4 – SpiNeMap [36]–[38]

Figure 1a shows the architecture of an NSoC with GPPs
and NPUs, where NPUs are arranged in an XY mesh. In-
ternally, each NPU consists of circuitries to perform neural
computations and memory to store synaptic weights. Unlike
a GPP, an NPU does not require frequent memory accesses
due to its self-contained memory architecture and therefore, it
does not suffer from the memory bandwidth bottleneck. Due
to its small hardware area, an NSoC may integrate several
NPUs (see Table I) to process a batch of data at once. This
is called batch parallelism. A system software exploits this
parallelism to improve the throughput. Following are the three
key limitations of existing schedulers that motivate this work.

First, existing schedulers do not exploit all forms of paral-
lelism that exist in an NSoC. For instance, an NSoC can sup-

1There are also tensor-based NSoCs such as Qualcomm’s Snapdragon [21]
and Nvidia’s Jetson AGX Xavier [22]. These NSoCs are evaluated in [23].

port pipeline parallelism, where the processing of operations
of subsequent input data can be overlapped in time by utilizing
the platform’s heterogeneous computing resources. It can also
support operation parallelism, where independent operations
acting on the same input data can be scheduled concurrently
on multiple computing resources. Figure 3 illustrates the
difference between these three forms of parallelism.

Second, machine learning is an evolving area of research
and new models are introduced to the community on a regular
basis. We analyze five models – SqueezeNet [39], Incep-
tionV3 [40], U-Net [41], BERT [42], and ConvLSTM [43],
for their support on existing NSoCs. Table II summarizes these
results. While all NSoCs support SqueezeNet, none of them
support U-Net, BERT, and ConvLSTM. On the other hand,
GrAI is the only hardware that supports InceptionV3. Existing
schedulers cannot map a machine learning model on an NSoC
if any of its operations is not supported on the NSoC’s NPU.

TABLE II
ANALYSIS OF EXISTING NSOC PLATFORMS.

NSoC SqueezeNet InceptionV3 U-Net BERT ConvLSTM Custom Model

Loihi
√

× × × × ×
Akida

√
× × × × ×

GrAI
√ √

× × × ×
SPECK

√
× × × × ×

Third, an NSoC may need to execute different machine
learning applications concurrently to satisfy user demands.
Imagine a use-case of running social media services (image
classification using MobileNet or InceptionV3) while listening
to music (audio processing using BERT or ConvLSTM) on a
cell phone. Existing schedulers cannot schedule more than one
machine learning application at the same time.

We propose PRISM, a performance-oriented real-time
scheduler for machine learning operations on a heterogeneous
NSoC. Following are our key contributions.

1) We propose a mechanism to construct an
interprocessor communication graph from a machine
learning model using a mapping and a self-timed
schedule of its operations on the computing resources.
We exploit the expressiveness of a synchronous dataflow
graph (SDFG) to represent an IPC graph.

2) We propose a transaction partial order algorithm to
create a transaction order for the inter-processor com-
munications of an IPC graph. We embed this transaction
order into the graph and schedule it on an NSoC so that
communication is overlapped with the computation.

3) We propose a Hill Climbing heuristic to explore the
design space of scheduling machine learning operations
on the computing resources and create opportunities for
batch, pipeline, and operation parallelism via exploiting
the platform’s heterogeneity.

4) We propose a probabilistic formulation to estimate the
performance slowdown due to resource contention. We
incorporate this formulation within a use-case mapping
framework that uses a heuristic resource sharing strategy
and a non-preemptive scheduling to map applications
of a use-case on an NSoC. PRISM minimizes the

performance slowdown by reducing the expected wait
time for operations scheduled on contending resources.

Our extensive evaluations with 20 machine learning work-
loads and five use-cases show that PRISM significantly im-
proves the performance and performance per watt for both
individual applications and multi-application use-cases when
compared to state-of-the-art schedulers.

To the best of our knowledge, PRISM is the only scheduler
that can schedule machine learning applications (standard or
custom) either individually or concurrently by exploiting the
heterogeneity of an NSoC platform.

Why Spiking? PRISM primarily deals with trained spik-
ing CNN (i.e., SDCNN inference) models because spiking
hardware platforms are energy-efficient due to their event-
driven operations. Therefore, these platforms are ideal for
embedded systems and other environments where machine
learning tasks may need to be performed within an energy
budget. Nevertheless, with simple modifications PRISM can
also schedule operations of a conventional CNN.

Fig. 1. (a) An NSoC platform with GPPs and NPUs. (b) Proposed scheduler
PRISM which schedules both individual applications and use-cases.

Overview of PRISM: Figure 1b shows an overview of
PRISM. It has two main components – individual application
exploration (left) and use-case mapping strategy (right). For
mapping individual applications, PRISM records all Pareto-
optimal schedules generated from the proposed Hill Climbing
heuristic. It selects a schedule that gives the highest perfor-
mance for a given energy constraint. For mapping use-cases,
PRISM finds the best strategy to share resources amongst
the concurrent applications. PRISM improves the quality of
experience by minimizing the time from when an application
is invoked to when it starts executing.

II. BACKGROUND AND MOTIVATION

To illustrate the different forms of parallelism in an NSoC,
Figure 2 shows an embedded platform performing audio and
video processing. A compiler compiles a user application into
an intermediate representation, which is shown to the right
with four operations (opx 1-4). A scheduler schedules these
operations on the computing resources of the hardware. On the
input front, audio/video frames are first streamed into buffers.
Once a batch is ready, the scheduler distributes it into mini-
batches and forwards them to the computing resources, one at
time. The number of frames in each mini-batch is equal to the
number of NPUs so they can be scheduled in parallel.

Fig. 2. An embedded platform running a machine learning application.

Figure 3 illustrates two different schedules. In ❶, we show
an existing scheduler that uses two NPUs. Each NPU operates
on a single input data from a mini-batch and performs all four
operations shown in Figure 2 (right). Once done, these NPUs
operate on the next mini-batch. This is batch parallelism. Most
schedulers exploit this parallelism to improve the performance.

In ❸, we illustrate how PRISM schedules the mini-bathes.
We make the following five observations. First, PRISM uses
all computing resources (two GPPs and two NPUs). Second,
unlike the baseline schedule where each NPU processes all
four operations sequentially, here each computing resource
processes a specific operation for every input data. Essentially,
PRISM creates a four-stage pipeline with NPU 1, GPP 1, GPP
2, and NPU 2, respectively. The processing of a new input
can begin when the first pipeline stage (NPU-1) completes its
execution. This is pipeline parallelism.

Fig. 3. An example showing the different forms of parallelism in an NSoC.

Third, PRISM schedules operations 2 & 3 on the two GPPs.
The figure illustrates additional computation times necessary
to process these operations on a GPP compared to an NPU.
Fourth, operations 2 & 3 can be scheduled in parallel as
they are independent (see Figure 2). PRISM schedules these
operations on the two GPPs. This is the operation parallelism,
which also contributes to performance improvement.

Finally, data exchanges are necessary between the com-
puting resources. To move data from a GPP to an NPU,
PRISM first copies the data from the GPP’s cache to the
main memory if it is not already there. Next, it initiates a
data transfer from the main memory to the memory of a
neuromorphic device using the DMA module. Once loaded, it
distributes this data to the target NPU using the interconnect.
Typically, a neuromorphic device integrates an embedded
DRAM (eDRAM) or a scratchpad memory for data storage as
shown in Figure 1a. Conversely, to move data from an NPU to
a GPP, PRISM first copies the data to the main memory using
the DMA module. Thereafter, a GPP loads this data into its
cache using its cache placement/replacement policies. These
communications are indicated using red arrows. PRISM over-

laps data communication with the computation, which further
improves the performance. We report 2.2x higher performance
compared to state-of-the-art schedulers (Section VI).

A. Synchronous Dataflow Graphs
Synchronous Data Flow Graphs (SDFGs, see [44]) are used

to model streaming applications that are implemented on a
multi-processor SoC (MPSoCs, see [45]). These graphs are
used to analyze a system in terms of execution time [46],
throughput [47], buffer requirements [48], energy [49],
power [50], temperature [51], and reliability [52].

PRISM models a machine learning application as an SDFG.
Nodes of an SDFG are called actors and they compute by
reading tokens. A token is the smallest unit of data communi-
cated between actors. To model an SDCNN as an SDFG, we
consider the SDCNN application to be composed of a set of
operations (convolution, pooling, batch normalization, etc). We
represent each operation as an actor and spikes generated from
these operations as tokens. Before an actor starts its execution,
it reads tokens from its input ports. After completing its
execution, it produces tokens on all of its output ports. The
number of tokens produced or consumed in one execution of
an actor is called the port rate. Port rates are visualized as
annotations on edges. Actor execution is also called firing, and
it requires a fixed amount of time to execute on a computing
unit. Edges in the graph are called channels and they represent
dependencies among actors.

An actor is called ready when it has sufficient input tokens
on all its input channels and sufficient buffer space on all its
output channels; an actor can only fire when it is ready.

Definition 1: (ACTOR) An actor ai is the tuple
⟨Ii, Oi, τi, µi⟩ consisting of a set Ii (⊆ Ports) of input ports,
a set Oi (⊆ Ports) of output ports, τi is the execution time
of ai and µi is its state space, which is the memory required
to store synaptic weights, and input and output spikes.

The execution time τi of actor ai is the tuple with its
execution time on different computing resources.

Definition 2: (SDFG) An SDFG is a directed graph G =
(A,C) consisting of a finite set A of actors and a finite set
C ⊆ Ports2 of channels. The source of channel chj

i ∈ C is
an output port of actor ai, the destination is an input port of
actor aj . All ports of all actors are connected to precisely one
channel. Channels connected to input and output ports of an
actor ai are denoted by InC(ai) and OutC(ai), respectively.

In our formulation, channels are delayless, i.e., tokens
produced in one invocation of an actor are consumed within
the iteration. One important performance property of an SDFG
is its throughput, which is defined as the inverse of its long-
term period. A period is the average time needed for one
iteration of an SDFG. An iteration is defined as the minimum
non-zero execution such that the original state of an SDFG is
obtained. This is our performance metric.

B. Performance Estimation of an SDFG
The long-term throughput of an SDFG can be computed by

analyzing its maximum cycle mean (MCM). We introduce the
following definitions.

Fig. 4. (a) An inception block. (b) Self-timed schedule of the SDFG representing the inception block. (c) interprocessor communication (IPC) graph representing
the self-timed execution. (d) A transaction partial order (TPO) graph formed by eliminating the computing actors. This graph is used to create a transaction
order of these communication actors. (e) The IPC graph embedded with the transaction order.

Definition 3: (DIGRAPH) The digraph Γ(T) of a n × n
matrix T with entries defined in Rmax is the tuple ⟨A,E⟩,
where A is the set of vertices, i.e., A = {1, 2, · · ·n} and
E is the set of connected ordered arcs between vertices i.e.,
E = {(i, j) | Ti,j ̸= −∞}.

Definition 4: (WALK) A walk w in digraph Γ(T) is the
sequence of arcs (x1, x2)(x2, x3) · · · (xk−1, xk); head of an
arc in the sequence is either the start vertex of the walk or
tail vertex of a preceding arc; and the tail vertex of an arc
in the sequence is either the end vertex of the walk or head
vertex of a succeeding arc. Weight of the walk is given by

|w|T = Tx1x2 + · · ·Txk−1xk (1)

Definition 5: (CYCLE) A cycle c in digraph Γ(T) is the
walk (x1, x2)(x2, x3) · · · (xk−1, xk), such that xk = x1.

Definition 6: (MAXIMUM CYCLE MEAN) The maximum
cycle mean, ρmax(T) is the maximum of the weight-to-length
ratio of all cycles c in Γ(T), i.e.,

ρmax(T) = max
∀c in Γ(T)

|c|T
|c|

= max
x1,··· ,xk−1

Tx1x2 + · · ·Txk−1xk

k − 1
(2)

Throughput of an SDFG is measured as the inverse of its
maximum cycle mean (Equation 2), i.e.,

Performance (throughput) =
1

ρmax(T)
(3)

With this background, we now introduce PRISM.

III. PRISM: A PERFORMANCE ORIENTED REAL-TIME
SCHEDULER FOR MACHINE LEARNING OPERATIONS

PRISM operates in three steps. First, it creates an
interprocessor communication (IPC) graph from a machine
learning application using the mapping of its operations on an
NSoC’s resources and a self-timed schedule. Next, it estimates
the throughput by embedding a transaction order for the inter-
processor communication into the IPC graph and applying the

maximum cycle mean formulation (Definition 6). Finally, it
explores the design space of scheduling operations to resources
using a Hill Climbing heuristic to maximize the throughput.
We now discuss these steps in details.

A. Creating IPC Graph

PRISM uses SDFGs to model an IPC graph. We illustrate
this using the example of an inception block shown in Fig-
ure 4a. This is the building block of our evaluated InceptionV3
machine learning model [40]. There are 9 operations (called
actors) – input, conv 1-6, pool, and concat. PRISM uses the
self-timed execution, where each computing resource executes
the actors assigned to it in a fixed order that is specified at
compile time. Before firing an actor, it must wait for all of
the actor’s tokens to be available. We illustrate a self-timed
schedule in Figure 4b for the specific actor allocation where
input, conv 1, 3, & 4 are mapped on GPP 1, conv 2 & 3
on NPU 1, and pool, conv 6, and concat on NPU 2. To use
self-timed strategy [16], PRISM enforces the actor execution
order for each resource. For instance, GPP 1 executes input,
conv 3, conv 1, and conv 4 in this same order every time the
inception block (i.e., its SDFG) is executed.

Figure 4c shows the IPC graph that PRISM constructs
for the inception block. Observe that the graph consists of
computing actors, which represent operations of the incep-
tion block and additionally, a few extra actors which are
shown with letters S and R. They represent send and receive
communication actors, respectively. PRISM categorizes each
channel of an SDFG as intra- or inter-processor channel,
where a channel is called intra-processor channel if its source
and destination actors are mapped to the same resource, and
inter-processor channel otherwise. In Figure 4b, there are 6
intra-processor and 5 inter-processor channels. For each inter-
processor channel, PRISM adds two communications actors –
a send actor at its source and a receive actor at its destination.
In Figure 4b, there are 5 send actors and 5 receive actors.

Fig. 5. Iterations of the transaction partial order algorithm to generate the transaction order of communication actors from the TPO graph of Figure 4d.
Operations in each iteration is demonstrated using iteration 2 as an examples. First, ready actors are identified. Next, MCMs are computed for each ready
actor by creating channels to other ready actors. The ready actor with the smallest MCM is selected as the candidate and deleted from the graph.

B. Embedding A Transaction Order in an IPC Graph

For an NSoC, inter-processor communications take place
via the platform’s shared resources. So, a transaction order
must be created for the communication actors. PRISM uses
the transaction partial order (TPO) graph, which it generates
from an IPC graph by eliminating its computing actors [53].
Figure 4d is the TPO graph of the IPC graph of Figure 4c.

Figure 5 illustrates the iterations of a transaction partial
order algorithm to generate the transaction order of commu-
nication actors . Algorithm 1 shows its pseudo-code. For each
iteration, the algorithm performs the following steps. First, it
prepares a list of ready actors (i.e., those that do not have
any incoming channel). In Figure 5, ready actors are SGPP1

1

for iteration 1, SGPP1
2 & RNPU2

1 for iteration 2, SGPP1
3 , RNPU1

1 ,
& RNPU2

1 for iteration 3, and so on. Next, for each ready
actor, it creates new outgoing channels to other ready actors.
We illustrate these channels using dashed lines for iteration
2. Next, it evaluates the MCM for these ready actors using
Equation 2. For iteration 2, we underline the MCMs out of
other cycle means. It calls a ready actor with the smallest
MCM as candidate and deletes it from the TPO graph along
with all its outgoing channels. In iteration 2, actor SGPP1

2

is the candidate as it has the smallest MCM. The current
iteration completes once the candidate is deleted from the
TPO graph. Subsequently, the algorithm repeats these steps for
the next iteration, eventually terminating when all actors are
deleted from the TPO graph. Finally, the algorithm generates a

transaction order by connecting all candidates in the sequence
in which they are deleted. Figure 4e shows the IPC graph with
the transaction order of its communication actors shown using
red dashed lines. PRISM uses this IPC graph with embedded
transaction order to compute the throughput using Equation 3.

C. Scheduling using a Hill Climbing Heuristic

Scheduling SDCNN operations on an NSoC consists of
determining the mapping, ordering, and timing [16]. Since
PRISM uses self-timed execution, it is not necessary to obtain
the precise timing information. Here, we discuss how PRISM
explores the design space of mapping and ordering.

We introduce the following notations.

GIPC(A,C) = An IPC graph with embedded transaction order
A = Set of computing and communication actors and |A| = NA

C = Set of channels between actors
GNSoC(R,E) = An NSoC platform graph

R = Set of resources of the NSoC and |R| = NR

E = Set of edges/links between the resources
M = {xi,j} = Mapping of GIPC on GNSoC

xi,j =

{
1 if actor ai ∈ A is mapped to resource rj ∈ R

0 otherwise

The problem of finding a mapping of actors to resources
draws parallel to mapping tasks on parallel computers [54].
This problem has been shown to be NP-complete for non-
trivial optimization objectives [55]. Therefore, heuristic solu-

Fig. 6. Overview of the Hill Climbing heuristic to generate mapping of operations to computing units of an NSoC platform. The swapping procedure is
demonstrated to the right of this figure.

tions such as Hill Climbing, Simulated Annealing, and Genetic
Algorithms are effective in finding a solution [56]. We use a
Hill Climbing heuristic because of its simplicity [57].

Algorithm 1: Transaction partial order algorithm.

Input: TPO graph GTPO(V,E)
Output: Transaction order O

1 O = ∅ /* Initialize the transaction order. */
2 while V ̸= ∅ do /* Start of an iteration */
3 R = {v ∈ V|inC(v) = ∅} /* Set of ready actors. */
4 for r ∈ R do
5 Create Ch(r, u) ∀u ∈ R and u ̸= r /* Create a new

channel from each ready actor to other ready
actors. */

6 La.append(r) and Lm.append
(
ComputeMCM(GTPO)

)
/* Store the ready actor and the
corresponding MCM in local variables La and
Lm, respectively. */

7 x = argmin(Lm) /* Find the index to the minimum
MCM. */

8 candidate = La[x] /* Select an actor with the
minimum MCM as candidate. */

9 O.append(candidate) /* Insert the candidate in
the transaction order O. */

10 V \ {candidate} and E \ {OutC(candidate)}
/* Delete the candidate and all its outgoing
channels. */

11 return O

Figure 6 illustrates the steps for the proposed Hill Climbing
heuristic. It starts with the generate initial mapping block,
which generates a set of initial mappings. Next, it selects one
of these starting mappings and proceeds to the exploration
stage. Here, it performs a trial swap for each actor ai ∈ A

with another actor that is mapped to a different resource. A
trial swap operation involves changing the mapping matrix
temporarily, as we illustrate to the right of the figure. For each
of these trial swaps, our heuristic evaluates the optimization
objective – the MCM. For this, we follow the procedure out-
lined in Sections III-A & III-B, which involves (1) creating an
IPC graph from the mapping obtained after performing a swap,
(2) embedding it with a transaction order for communication
actors using Alg. 1, and (3) computing the MCM using Eq. 2.

Next, the heuristic selects a swap with the minimum MCM
because reducing the MCM increases its throughput. In case of
a tie, it selects a trial swap randomly. Once a swap is finalized,
it makes the swap permanent by updating the mapping matrix.
It then iterates through these steps for the next actor. A pass
in this heuristic involves completing trial swaps for every
pair of actors mapped to different resources. If the objective
function improves during a pass, we initiate another pass of our
heuristic. Otherwise, we call the heuristic to be stuck at a local
minimum. To come out of this local minimum, we perturb the
current mapping and restart the exploration, where perturbing

involves performing a fixed number of random swaps.
During the Hill Climbing heuristic, we record all mappings,

i.e., the initial mapping and the mappings obtained after
performing each swap operation. For all these mappings,
we estimate the energy consumption of their corresponding
schedule. A set of Pareto-optimal mappings are only retained
for use-case mapping, which is described next.

IV. MAPPING MULTI-APPLICATION USE-CASES ON NSOC
Figure 7 illustrates how PRISM creates schedules for more

than one application at the same time. Imagine a user initiating
application B at time t0, when the platform is already executing
application A. Therefore, operations of B must be scheduled
on the same resources that are currently executing A. This is
a huge undertaking and it involves guaranteeing performance
for both these applications to deliver a quality-of-service. One
solution could be to analyze every combination of applications
at design time and store the corresponding schedule – with
n applications, there are n2 use-cases to analyze. However,
storing all use-cases from design-time can increase the stor-
age overhead of an embedded platform and provides limited
flexibility for run-time adaptation.

To address this, PRISM initiates a local and global explo-
ration. The objective of PRISM’s local exploration is to create
a quick schedule for B keeping the current schedule of A
unchanged. This is to admit B in the shortest possible time
while providing a certain performance guarantee and ensuring
that the performance of A does not degrade excessively. In the
figure, PRISM admits B to the platform at time t1.

The objective of PRISM’s global exploration is to find
optimized schedules for both A and B, which provide the best
system performance while sharing the resources of an NSoC.
In the figure, PRISM implements the optimized schedule for
A and B from time t2 onwards.

A. Local Exploration of PRISM

Algorithm 2 shows the pseudo-code of PRISM’s local
exploration. Here, SchA is the schedule of application A, i.e.,
the schedule currently running on the NSoC. First, PRISM
retrieves all Pareto-optimal schedules of the newly enabled
application B and store it in the set SB (line 2). Next, for
each schedule SchB ∈ SB , it computes the resource con-
tention related overhead using a probabilistic framework (line
4). Finally, it selects a schedule for B that minimizes this
overhead. The key idea is to reduce the expected wait time
before actors from the two applications can be scheduled on

Fig. 7. Scheduling multi-application use-cases on an NSoC via PRISM’s local and global explorations.

contending resources. PRISM uses this new schedule for B
after it finishes exploring all alternatives. In the mean time,
the platform continues to execute the current schedule of A.
In this way, PRISM ensures a non-preemptive system where
the actors that are already executing on the platform are not
preempted to provide resources for the new application.
Algorithm 2: Local exploration of PRISM.

Input: Schedule database sDB, schedule SchA of A, and application B
Output: Schedule SchB of B.

1 ρA = MCM(SchA) /* MCM of A. */
2 SB = sDB(B) /* Pareto-optimal schedules of B. */
3 for SchB ∈ SB do /* For each schedule in SB */
4 SchA, SchB = Contention(SchA, SchB) /* Compute

resource sharing related contention. */
5 ρ̂A = MCM(SchA) and ρB = MCM(SchB) /* Compute

MCM of A and B considering resource contention.

*/
6 ∆ρA = 100 ∗ ρ̂A−ρA

ρA
/* Compute the performance

degradation of A due to resource contention. */
7 if ∆ρA < ∆ρmax and ρB < ρconstraint then
8 return SchB

To formulate the resource contention related overhead, we
consider that each actor must be in one of the three states
at any given time – (1) not-ready state, when it waits for all
of its tokens to be available, (2) wait state, when it waits for
its resource to be available, and (3) execution state, when it is
currently executing a machine learning operation. Now assume
that actor b ∈ B is mapped on the same resource as actor a ∈
A. We are to model the expected execution time of a and b
when contending for the resource. When b is enabled, it can
find a in one of the three states. Let the random variable S(t)

denote the state of actor a and Y denote the wait time of b.
We define the following probabilities.

P
(
S(t) = Sw

)
= probability of a in wait state (4)
= twait · ρmax

P
(
S(t) = Se

)
= probability of a in execution state
= ta · ρmax

P
(
S(t) = Sn

)
= probability of a in not-ready state

= 1− P
(
S(t) = Sw

)
− P

(
S(t) = Se

)
where twait is the average wait time and ρmax is the MCM of
the IPC of A. The above steady-state probabilities are derived
assuming stationarity of an actor in each state.

The expected wait time is obtained as

E(Y) =

∫ ∞

−∞
y P (y) dy, (5)

where P (y) is the probability density function of Y . We make
the following consideration in solving Equation 5. First, if b
arrives when a is in not-ready state, then b can be scheduled
immediately. Second, if b arrives when a is in wait state (due
to resource contention from other actors), then b must wait for
the entire duration of the a’s execution time. In this case, b is
pushed to the back of the ready queue for the resource. Here,
we uses first-come-first-serve (FCFS) scheduling for each
resource. Finally, if b arrives when a has started executing,
then b must wait for the remaining time until a finishes
execution. Therefore, Equation 5 can be rewritten as

E(Y) = y|S(t)=Sn
· P

(
S(t) = Sn

)
(6)

+ y|S(t)=Sw
· P

(
S(t) = Sw

)
+ y|S(t)=Se

· P
(
S(t) = Se

)
Assuming the remaining execution time of a is uniformly

distributed within the time duration of the execution time of
a, the above equation reduces to

E(Y) = 0 · P
(
S(t) = Sn

)
+ ta · twait · ρmax +

ta

2
· ta · ρmax (7)

Since E(Y) is the average wait time twait, Equation 7 can
be solved to obtain

twait =
t2a · ρmax/2

1− ta · ρmax
(8)

Finally, the modified execution time of b is

tb = tb + twait (9)

This formulation needs to be extended for every actor of
the two applications A and B. Once completed, Algorithm 2
computes the modified MCM for the two applications (line
5). It estimates the performance degradation of A (line 6). If
they both are acceptable, i.e., they are within the user defined
limits, Algorithm 2 terminates, returning the new schedule
of B (lines 7-8). Here, ∆ρmax is the maximum acceptable
throughput degradation of A and ρconstraint is the throughput
constraint of B. These are user-defined parameters.

B. Global Exploration of PRISM

For global exploration, PRISM first merges the IPC graphs
of the two application. Let GA(A1, C1) be the IPC graph of
application A with the set A1 of actors and set C1 of channels.

Let GB(A2, C2) be the IPC graph of application B with the set
A2 of actors and set C2 of channels. The merged graph is

GAB(A,C) | A = A1 ∪A2 and C = C1 ∪ C2 (10)

Next, the merged graph is analyzed using the formulation
that we presented in Section II-B. New schedules for A and
B are implemented after completing their ongoing iterations.

V. EVALUATION METHODOLOGY

A. Simulation Framework

We implement PRISM inside NeuroXplorer [58], an archi-
tectural simulator of neuromorphic system-on-chip platforms.
We perform all simulations on a Lambda workstation, which
has AMD Threadripper 3960X with 24 cores, 128 MB cache,
128 GB RAM, and 2 RTX3090 GPUs. Table III shows
our simulation parameters. The code is available online at
https://github.com/drexel-DISCO/PRISM.

TABLE III
MAJOR SIMULATION PARAMETERS.

Number of GPPs 2

Number of NPUs 128

NSoC Platform µBrain [59], SPECK [29],& GrAI [28]

Design Parameters Energy [60], Throughput [19], Reliability [61], [62], and

Technology [63]

NPU supported operations – µBrain Activation, Add, Conv2D, Concatenate, Dense, InputLayer,

Normalization

NPU supported operations – SPECK Activation, Add, AveragePooling2D, Concatenate,

Conv2D, Dense, Dropout, Flatten, GlobalAveragePool-

ing2D, GlobalMaxPooling2D, InputLayer, MaxPooling2D,

Normalization, ReLU

NPU supported operations – GrAI BatchNormalization, ZeroPadding2D, DepthwiseConv2D,

Reshape, Rescaling, Multiply, and all supported operations

of SPECK

TABLE IV
EVALUATED MODELS AND IMAGENET TOP-1 ACCURACY.

Models Accuracy Models Accuracy Models Accuracy Models Accuracy

LeNet 49.0% ResNet50 77.1% DenseNet121 74.4% MobeleNet 74.2%

AlexNet 60.5% ResNet101 78.0% DenseNet169 76.1% ShuffleNet 70.8%

ZFNet 64.0% InceptionV3 78.1% SqueezeNet 57.5% NASNetMobile 77.9%

VGG16 73.4% ResNext 83.5% Xception 78.6% NoisyStudent 82.0%

B. Evaluated Applications

We evaluate PRISM using 20 models – 16 models trained
on the ImageNet dataset and four additional state-of-the-art
models. The ImageNet models are summarized in Table IV.
Although improving accuracy is not the focus here, we pro-
vide accuracy numbers for completeness. The four additional
models are (1) PilotNet [64] for self-driving cars, (2) the
transformer-based BERT [42] for natural language processing,
(3) U-Net [41] for medical image segmentation, and (4)
ConvLSTM [43] for time-series data processing.

We use the following use-cases for evaluating the local and
global explorations of PRISM for scheduling use-cases.

1) Usecase-1: A combination of BERT and MobileNet

2) Usecase-2: A combination of ResNet50 and U-Net
3) Usecase-3: A combination of SqueezeNet and AlexNet
4) Usecase-4: A combination of VGG16 and ShuffleNet
5) Usecase-5: A combination of Xception and PilotNet

C. Models Supported on Evaluated NSoCs

As we discuss in Section I, an NPU may not support
all operations of a machine learning model. To give further
insight, Figure 8 shows the fraction of unsupported operations
for three state-of-the-art NSoCs – µBrain [32], SPECK [29],
and GrAI [28]. We report results for 5 ImageNet models and
average across 16 such models of Table IV. We also report
results for the four additional models and the average across
all 20 evaluated models. We make the following observations.

Sq
zN

et

M
ob

lN
et

N
oi

sy
St

ud

X
ce

pt
io

n

In
ce

pt
io

nV
3

AV
G

.(
im

gn
et

)

P
ilo

tN
et

B
E

R
T

U
-N

E
T

C
on

vL
ST

M

AV
G

.(
al

l)

0

50

100

U
ns

up
p

or
te

d
O

p
er

at
io

ns
(%

)

µBrain SPECK GrAI

Fig. 8. Unsupported operations on three state-of-the-art NSoC platforms.

Some models such as SqueezeNet (abbreviated as SqzNet)
is supported on all three platforms (unsupported operations is
close to 0%). This is because this model consists of standard
CNN operations such as convolution, pooling, and dense,
which are all supported on these three platforms. On the other
hand, most operations of BERT, U-Net and ConvLSTM are
not supported on any of these platforms due to the use of
specialized operations. For ImageNet models, µBrain, SPECK,
and GrAI do not support on average 12%, 30%, and 5% of
the total operations, respectively. Considering all models, these
fractions are 26%, 38%, and 21%, respectively. PRISM uses
the GPPs to schedule all unsupported operations.

D. Evaluated Schedulers

We evaluate the following schedulers.
1) Baseline [8]: This is an NPU-only policy. It uses a GPP

to schedule only the operations not supported on the
NPU. It exploits only batch parallelism.

2) SentryOS [32]: This is the baseline that exploits both
pipeline and batch parallelism.

3) PRISM: The is the proposed scheduler which exploits
platform heterogeneity to schedule operations. Here, an
operation can be scheduled on a GPP even if it is
supported on an NPU. Using a Hill Climbing heuristic,
PRISM creates opportunities for all three forms of
parallelism – batch, pipeline, and operation.

VI. RESULTS

A. Throughput Performance

Figure 9 reports throughput of the evaluated schedulers We
make the following observations.

Although both Baseline and SentryOS exploit batch par-
allelism, SentryOS additionally exploits pipeline parallelism
within each batch. So, the throughput of SentryOS is higher
(on average, 1.9x higher for ImageNet models and 1.6x higher

Sq
zN

et

M
ob

lN
et

N
oi

sy
St

ud

X
ce

pt
io

n

In
ce

pt
io

nV
3

AV
G

.(
im

gn
et

)

P
ilo

tN
et

B
E

R
T

U
-N

et

C
on

vL
ST

M

AV
G

.(
al

l)

1

2

3
N

or
m

al
iz

ed
T

hr
ou

gh
pu

t

2.3x 2.2x

Balseline SentryOS PRISM (Proposed)

Fig. 9. Throughput normalized to Baseline.

for all 20 models). Between SentryOS and the proposed
PRISM, SentryOS uses a GPP only for those operations that
are not supported on an NPU. Therefore, the degree of pipeline
and operation parallelism that can be exploited is limited. On
the other hand, PRISM has a higher degree of freedom in
mapping operations to GPPs and NPUs. So, PRISM can better
exploit these forms of parallelism using the Hill Climbing
heuristic. For ImageNet models, PRISM has 2.3x and 1.2x
higher throughput than Baseline and SentryOS, respectively.
Considering all 20 models, the throughput of PRISM is 2.2x
and 1.3x higher, respectively.

B. Performance Per Watt

Figure 10 reports the throughput per watt of the evaluated
schedulers. We make the following observations.

Between Baseline and SentryOS, SentryOS has 18% higher
throughput per watt on average than Baseline. Although
SentryOS has 1.9x higher speedup than Baseline (see Sec-
tion VI-A), it also has a higher energy consumption due to an
increased utilization of resources in exploiting pipeline paral-
lelism. For the 4 non-ImageNet models where the throughput
improvement is relatively small, the throughput per watt is
lower than Baseline. Considering all 20 models, SentryOS has
only 3% higher throughput per watt compared to Baseline.

Sq
zN

et

M
ob

lN
et

N
oi

sy
St

ud

X
ce

pt
io

n

In
ce

pt
io

nV
3

AV
G

.(
im

gn
et

)

P
ilo

tN
et

B
E

R
T

U
-N

et

C
on

vL
ST

M

AV
G

.(
al

l)

1

2

3

N
or

m
al

iz
ed

T
hr

.
P

er
W

at
t

57% 42%

Balseline SentryOS PRISM (Proposed)

Fig. 10. Throughput per Watt normalized to Baseline (higher is better).

Between SentryOS and PRISM, PRISM has a higher
throughput (average 1.3x higher) and lower energy (average
5% lower). So, the throughput per watt is 33% higher than
SentryOS for ImageNet models and 38% higher for all 20
models. Compared to Baseline, PRISM has 57% and 42%
higher throughput per watt, respectively.

C. Energy Breakdown

Figure 11 reports the total energy of each model, distributed
into GPP and NPU energy. The figure reports both active and
idle energy, where active energy is the energy consumed when
a resource is performing an operation, and idle energy is the
energy consumed while it is not performing any operation. We
make the following observations.

When idle, resources still draw a portion of the peak power.
Therefore, the idle GPP and NPU energy constitute on average
8% and 6% of the total energy, respectively. Even though

Sq
zN

et

M
ob

lN
et

N
oi

sy
St

ud

X
ce

pt
io

n

In
ce

pt
io

nV
3

AV
G

.(
im

gn
et

)

P
ilo

tN
et

B
E

R
T

U
-N

E
T

C
on

vL
ST

M

AV
G

.(
al

l)

0

50

100

150

E
ne

rg
y

(%
)

GPP-Idle GPP-Active NPU-Idle NPU-Active

Fig. 11. Total energy distributed into GPP and NPU energy (idle and active).

all operations of SqueezeNet are supported on an NPU (see
Figure 8), GPP active energy constitutes about 21% of the total
energy. This is because PRISM schedules its operations using
both GPPs and NPUs to improve the throughput. For BERT,
U-Net, and ConvLSTM, PRISM uses the GPP to schedule
most operations. So, the GPP active energy is the dominant
component of the total energy (on average 69%).

D. Pareto Exploration during Hill Climbing Optimization

Figure 12 shows the energy-throughput Pareto points re-
tained during the proposed Hill Climbing based mapping ex-
ploration for six models. PRISM selects the highest throughput
point for every model for a given energy constraint.

1.0 1.2 1.4
1 / Norm. Energy

0.70

0.75

0.80

0.85

0.90

0.95

1.00

N
or

m
.

P
er

fo
rm

an
ce

SqzNet

(a) SqueezeNet.

1.0 1.1 1.2 1.3
1 / Norm. Energy

0.80

0.85

0.90

0.95

1.00

N
or

m
.

P
er

fo
rm

an
ce

MobNet

(b) MobileNetV3.

1.00 1.05 1.10 1.15
1 / Norm. Energy

0.850

0.875

0.900

0.925

0.950

0.975

1.000

N
or

m
.

P
er

fo
rm

an
ce

Xception

(c) Xception.

1.0 1.2 1.4
1 / Norm. Energy

0.75

0.80

0.85

0.90

0.95

1.00

N
or

m
.

P
er

fo
rm

an
ce

PilotNet

(d) PilotNet.

1.00 1.02
1 / Norm. Energy

0.97

0.98

0.99

1.00

N
or

m
.

P
er

fo
rm

an
ce

BERT

(e) BERT.

1.00 1.05 1.10
1 / Norm. Energy

0.92

0.94

0.96

0.98

1.00

N
or

m
.

P
er

fo
rm

an
ce

U-Net

(f) U-Net.

Fig. 12. Pareto points retained during the Hill Climbing exploration.

E. Throughput Scalability

Figure 13a reports the throughput of PRISM normalized to
Baseline for the three evaluated NSoCs. For BERT, U-Net, and
ConvLSTM, the throughput is comparable. This is because
most operations of these three models are not supported on
an NPU. Therefore, PRISM uses GPPs for these operations,
which results in similar performance across the three NSoC
platforms. For other applications, throughput is higher for the
platform where the heterogeneity can be exploited better.

Figure 13b reports the throughput of PRISM normalized to
Baseline as we increase the number of NPUs from 128 (base
config) to 512. We observe that the relative throughput reduces
due to this change. This is because with more NPUs, batch par-
allelism is the dominant factor that contributes to performance.
Since both PRISM and Baseline exploits this parallelism, the
relative performance between these two schedulers reduces.

PRISM is still better because of the pipeline and operation
parallelism that it additionally exploits from the hardware.

Sq
zN

et

M
ob

lN
et

N
oi

sy
St

ud

X
ce

pt
io

n

In
ce

pt
io

nV
3

AV
G

.(
im

gn
et

)

P
ilo

tN
et

B
E

R
T

U
-N

E
T

C
on

vL
ST

M

AV
G

.(
al

l)

1.5

2.0

2.5

3.0

N
or

m
al

iz
ed

T
hr

ou
gh

pu
t

µBrain SPECK GrAI

(a) Throughput normalized to Baseline across evaluated platforms.

Sq
zN

et

M
ob

lN
et

N
oi

sy
St

ud

X
ce

pt
io

n

In
ce

pt
io

nV
3

AV
G

.(
im

gn
et

)

P
ilo

tN
et

B
E

R
T

U
-N

E
T

C
on

vL
ST

M

AV
G

.(
al

l)

1

2

3

N
or

m
al

iz
ed

T
hr

ou
gh

pu
t

NPUs = 128 256 512

(b) Throughput normalized to Baseline with increasing number of NPUs.

Sq
zN

et

M
ob

lN
et

N
oi

sy
St

ud

X
ce

pt
io

n

In
ce

pt
io

nV
3

AV
G

.(
im

gn
et

)

P
ilo

tN
et

B
E

R
T

U
-N

E
T

C
on

vL
ST

M

AV
G

.(
al

l)

5

10

N
or

m
al

iz
ed

T
hr

ou
gh

pu
t

GPPs = 2 4 8

(c) Throughput normalized to Baseline with increasing number of GPPs.

Fig. 13. Speedup of PRISM for (a) different evaluated platforms, (b) increas-
ing number of NPUs, and (c) increasing number of GPPs.

Figure 13c reports the throughput of PRISM normalized to
Baseline as we increase the number of GPPs from 2 (base
config) to 8. We observe that the relative throughput improves
due to this change. This is because with more GPPs, PRISM
can better exploit operation parallelism in an NSoC, which
improves the throughput.

F. Use-case Performance

Since no existing schedulers can map use-cases, we created
a baseline where the second application of a use-case is
mapped by randomly allocating its actors. Figure 14 reports
the throughput using PRISM’s local and global explorations
normalized to this baseline for five use-cases.

Usecase-1 Usecase-2 Usecase-3 Usecase-4 Usecase-5

5

10

15

N
or

m
.

T
hr

ou
gh

pu
t

21.7x 21.4x

PRISM-local

PRISM-global

Fig. 14. Throughput normalized to baseline. The first application of a use-
case is the current application that is executing on an NSoC. The second
application is the one that is invoked by a user at run-time.

We observe that PRISM’s local exploration results in an
average 3.5x higher throughput than baseline. This is because
during local exploration, PRISM analyzes all pre-computed
schedules of the new application using a probabilistic formu-
lation and selects one that minimizes the resource contention
related slowdown for both applications (ongoing and new).
On the other hand, baseline does not incorporate performance
when mapping the new application of a use-case. PRISM’s
global exploration results in 3.8x and 13.4x higher throughput
than the local exploration and baseline, respectively. The
improvement is because during global exploration, PRISM

performs the Hill Climbing heuristic on the merged graph of
the two applications to find optimized schedules for both. This
results in generating schedules that give higher throughput.

G. Wait Times

Table V reports wait times for the second application of
each use-case when an NSoC is currently executing the first
application. Here, the wait time is measured as the time from
when a user invokes the second application to the time when
the application starts executing on the hardware. This wait
time depends on when a schedule is created for the second
application. We observe that the local exploration is faster than
global exploration (on average, 12x lower wait time). This
improves the user experience.

TABLE V
WAIT TIMES OF PRISM’S LOCAL AND GLOBAL EXPLORATIONS.

PRISM Usecase-1 Usecase-2 Usecase-3 Usecase-4 Usecase-5
local 12s 21s 6s 9s 14s

global 223s 116s 28s 138s 226s

VII. CONCLUSION

We propose PRISM, a real-time performance-oriented
scheduler for neuromorphic system-on-chips (NSoCs).
PRISM operates in four steps. First, it creates an
interprocessor communication (IPC) graph of a machine
learning model by considering the mapping of its operations
and a self-timed schedule. Next, it embeds a transaction order
for the inter-processor communications into the IPC graph.
Next, it schedules the graph by overlapping communication
with the computation. Finally, it uses a Hill Climbing heuristic
to explore the design space of mapping and scheduling IPC
graphs to an NSoC, exploiting the platform heterogeneity in
improving opportunities for batch, pipeline, and operation
parallelism. For multi-application uses-cases, PRISM uses a
probabilistic framework to model resource contention related
slowdown. It creates a schedule to reduce the expected
wait time before concurrent operations are scheduled on
contending resources. Our extensive evaluations with 20
machine learning workloads and five use-cases show that
PRISM significantly improves the performance per watt for
both individual applications and multi-application use-cases
when compared to state-of-the-art schedulers.

ACKNOWLEDGMENTS

This work is supported by U.S. Department of Energy under
Award Number DE-SC0022014 and the National Science
Foundation under Awards CCF-1937419 & CCF-1942697.

REFERENCES

[1] B. Han, A. Sengupta, and K. Roy, “On the energy benefits of spiking
deep neural networks: A case study,” in International Joint Conference
on Neural Networks (IJCNN), 2016.

[2] A. Sengupta, Y. Ye, R. Wang, C. Liu, and K. Roy, “Going deeper in
spiking neural networks: VGG and residual architectures,” Frontiers in
Neuroscience, vol. 13, p. 95, 2019.

[3] Y. Cao, Y. Chen, and D. Khosla, “Spiking deep convolutional neural
networks for energy-efficient object recognition,” International Journal
of Computer Vision, vol. 113, pp. 54–66, 2015.

[4] W. Maass, “Networks of spiking neurons: The third generation of neural
network models,” Neural Networks, vol. 10, pp. 1659–1671, 1997.

[5] G. Datta and P. A. Beerel, “Can deep neural networks be converted to
ultra low-latency spiking neural networks?” in Design, Automation, and
Test in Europe (DATE) Conference and Exhibition, 2022.

[6] F. Xing, Y. Yuan, H. Huo, and T. Fang, “Homeostasis-based cnn-to-
snn conversion of inception and residual architectures,” in International
Conference on Neural Information Processing (ICONIP), 2019.

[7] W. Fang, Z. Yu, Y. Chen, T. Huang, T. Masquelier, and Y. Tian, “Deep
residual learning in spiking neural networks,” Conference on Neural
Information Processing Systems (NeurIPS), 2021.

[8] S. Song, H. Chong, A. Balaji, A. Das, J. Shackleford, and N. Kandasamy,
“DFSynthesizer: Dataflow-based synthesis of spiking neural networks to
neuromorphic hardware,” ACM Transactions on Embedded Computing
Systems, vol. 2, pp. 1–4, 2021.

[9] A. Paul, M. A. S. Tajin, A. Das, W. Mongan, and K. Dandekar, “Energy-
efficient respiratory anomaly detection in premature newborn infants,”
Electronics, pp. 689–694, 2022.

[10] A. Balaji, F. Corradi, A. Das, S. Pande, S. Schaafsma, and F. Catthoor,
“Power-accuracy trade-offs for heartbeat classification on neural net-
works hardware,” Journal of Low Power Electronics, vol. 14, pp. 508–
519, 2018.

[11] C. Mead, “Neuromorphic electronic systems,” Proceedings of the IEEE,
vol. 78, pp. 1629–1636, 1990.

[12] S. Li, E. Hanson, X. Qian, H. H. Li, and Y. Chen, “ESCALATE: Boost-
ing the efficiency of sparse CNN accelerator with kernel decomposition,”
in International Symposium on Microarchitecture (MICRO), 2021.

[13] Z. Shao, X. Chen, L. Du, L. Chen, Y. Du, W. Zhuang, H. Wei, C. Xie,
and Z. Wang, “Memory-efficient CNN accelerator based on interlayer
feature map compression,” IEEE Transactions on Circuits and Systems
I: Regular Papers, vol. 69, pp. 668–681, 2021.

[14] V. Mrazek, Z. Vası́cek, L. Sekanina, M. A. Hanif, and M. Shafique,
“ALWANN: Automatic layer-wise approximation of deep neural net-
work accelerators without retraining,” in International Conference on
Computer-Aided Design (ICCAD), 2019.

[15] F. Catthoor, S. Mitra, A. Das, and S. Schaafsma, “Very large-scale neu-
romorphic systems for biological signal processing,” in CMOS Circuits
for Biological Sensing and Processing, 2018.

[16] S. Sriram and S. Bhattacharyya, Embedded Multiprocessors; Scheduling
and Synchronization, 2000.

[17] A. Das and A. Kumar, “Dataflow-based mapping of spiking neural
networks on neuromorphic hardware,” in Great Lakes Symposium on
VLSI (GLSVLSI), 2018.

[18] A. Balaji and A. Das, “A framework for the analysis of throughput-
constraints of SNNs on neuromorphic hardware,” in IEEE Annual
Symposium on VLSI (ISVLSI), 2019.

[19] S. Song, A. Balaji, A. Das, N. Kandasamy, and J. Shackleford, “Compil-
ing spiking neural networks to neuromorphic hardware,” in International
Conference on Languages, Compilers, and Tools for Embedded Systems
(LCTES), 2020.

[20] S. Song, L. V. Mirtinti, A. Das, and N. Kandasamy, “A design flow for
mapping spiking neural networks to many-core neuromorphic hardware,”
in International Conference on Computer-Aided Design (ICCAD), 2021.

[21] Qualcomm. (2022) Snapdragon Neural Processing Engine (SNPE).
[22] Nvidia. (2022) Jetson AGX Xavier.
[23] A. Ignatov, R. Timofte, W. Chou, K. Wang, M. Wu, T. Hartley, and

L. Van Gool, “AI benchmark: Running deep neural networks on android
smartphones,” in ECCV Workshops, 2018.

[24] M. Davies, N. Srinivasa, T. H. Lin, G. Chinya, Y. Cao, S. H. Choday,
G. Dimou, P. Joshi, N. Imam, S. Jain, Y. Liao, C. K. Lin, A. Lines,
R. Liu, D. Mathaikutty, S. McCoy, A. Paul, J. Tse, G. Venkataramanan,
Y. H. Weng, A. Wild, Y. Yang, and H. Wang, “Loihi: A neuromorphic
manycore processor with on-chip learning,” IEEE Micro, vol. 38, pp.
82–99, 2018.

[25] C.-K. Lin, A. Wild, G. N. Chinya, T.-H. Lin, M. Davies, and H. Wang,
“Mapping spiking neural networks onto a manycore neuromorphic
architecture,” in Programming Language Design and Implementation
(PLDI), 2018.

[26] BrainChip. (2022) Akida Neuromorphic System- on-Chip.
[27] BrainChip. (2022) MetaTF development environment.
[28] “GrAI Chip and GrAIFlow Software,” https://www.graimatterlabs.ai/

product, accessed: 2022-05-10.

[29] Q. Liu, O. Richter, C. Nielsen, S. Sheik, G. Indiveri, and N. Qiao,
“Live demonstration: face recognition on an ultra-low power event-
driven convolutional neural network ASIC,” in CVPR Workshops, 2019.

[30] S. Furber, F. Galluppi, S. Temple, and L. A. Plana, “The SpiNNaker
project,” Proceedings of the IEEE, vol. 102, pp. 652–665, 2014.

[31] F. Galluppi, S. Davies, A. Rast, T. Sharp, L. A. Plana, and S. Furber, “A
hierachical configuration system for a massively parallel neural hardware
platform,” in International Conference on Computing Frontiers (CF),
2012.

[32] M. L. Varshika, A. Balaji, F. Corradi, A. Das, J. Stuijt, and F. Catthoor,
“Design of many-core big little µBrains for energy-efficient embedded
neuromorphic computing,” in Design, Automation, and Test in Europe
(DATE) Conference and Exhibition, 2022.

[33] L. Shi, J. Pei, N. Deng, D. Wang, L. Deng, Y. Wang, Y. Zhang, F. Chen,
M. Zhao, S. Song et al., “Development of a neuromorphic computing
system,” in International Electron Devices Meeting (IEDM), 2015.

[34] Y. Ji, Y. Zhang, S. Li, P. Chi, C. Jiang, P. Qu, Y. Xie, and W. Chen,
“NEUTRAMS: Neural network transformation and co-design under
neuromorphic hardware constraints,” in International Symposium on
Microarchitecture (MICRO), 2016.

[35] S. Moradi, N. Qiao, F. Stefanini, and G. Indiveri, “A scalable multicore
architecture with heterogeneous memory structures for dynamic neuro-
morphic asynchronous processors (DYNAPs),” IEEE Transactions on
Biomedical Circuits and Systems, vol. 12, pp. 106–122, 2017.

[36] A. Das, Y. Wu, K. Huynh, F. Dell’Anna, F. Catthoor, and S. Schaafsma,
“Mapping of local and global synapses on spiking neuromorphic hard-
ware,” in Design, Automation, and Test in Europe (DATE) Conference
and Exhibition, 2018.

[37] A. Balaji, A. Das, Y. Wu, K. Huynh, F. G. Dell’Anna, G. Indiveri, J. L.
Krichmar, N. D. Dutt, S. Schaafsma, and F. Catthoor, “Mapping spiking
neural networks to neuromorphic hardware,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 28, pp. 76–86, 2019.

[38] A. Balaji, S. Song, A. Das, J. Krichmar, N. Dutt, J. Shackleford,
N. Kandasamy, and F. Catthoor, “Enabling resource-aware mapping of
spiking neural networks via spatial decomposition,” Embedded Systems
Letters, vol. 13, pp. 142–145, 2020.

[39] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally,
and K. Keutzer, “SqueezeNet: AlexNet-level accuracy with 50x fewer
parameters and¡ 0.5 MB model size,” arXiv, 2016.

[40] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” in Computer Vision and
Pattern Recognition Conference (CVPR), 2016.

[41] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” in International Conference on
Medical Image Computing and Computer-Assisted Intervention (MIC-
CAI), 2015.

[42] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[43] X. Shi, Z. Chen, H. Wang, D.-Y. Yeung, W.-K. Wong, and W.-c.
Woo, “Convolutional LSTM network: A machine learning approach for
precipitation nowcasting,” Conference on Neural Information Processing
Systems (NeurIPS), 2015.

[44] E. Lee and D. Messerschmitt, “Synchronous data flow,” Proceedings of
the IEEE, vol. 75, pp. 1235–1245, 1987.

[45] W. Wolf, A. A. Jerraya, and G. Martin, “Multiprocessor system-on-chip
(MPSoC) technology,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 27, pp. 1701–1713, 2008.

[46] K. Rosvall and I. Sander, “A constraint-based design space exploration
framework for real-time applications on MPSoCs,” in Design, Automa-
tion, and Test in Europe (DATE) Conference and Exhibition. IEEE,
2014.

[47] A. H. Ghamarian, M. C. Geilen, S. Stuijk, T. Basten, B. D. Theelen,
M. R. Mousavi, A. J. Moonen, and M. J. Bekooij, “Throughput analysis
of synchronous data flow graphs,” in International Conference on
Application of Concurrency to System Design (ACSD), 2006.

[48] S. Stuijk, M. Geilen, and T. Basten, “Exploring trade-offs in buffer re-
quirements and throughput constraints for synchronous dataflow graphs,”
in Design Automation Conference (DAC), 2006.

[49] A. Das, A. Kumar, and B. Veeravalli, “Energy-aware task mapping and
scheduling for reliable embedded computing systems,” ACM Transac-
tions on Embedded Computing Systems, vol. 13, pp. 1–27, 2014.

[50] A. K. Singh, A. Das, and A. Kumar, “Energy optimization by exploiting
execution slacks in streaming applications on multiprocessor systems,”
2013.

[51] A. Das, A. Kumar, and B. Veeravalli, “Temperature aware energy-
reliability trade-offs for mapping of throughput-constrained applications
on multimedia MPSoCs,” in Design, Automation, and Test in Europe
(DATE) Conference and Exhibition, 2014.

[52] A. Das, A. Kumar, and B. Veeravalli, “Reliability and energy-aware
mapping and scheduling of multimedia applications on multiprocessor
systems,” IEEE Transactions on Parallel and Distributed Systems,
vol. 27, pp. 869–884, 2015.

[53] N. Bambha, V. Kianzad, M. Khandelia, and S. S. Bhattacharyya,
“Intermediate representations for design automation of multiprocessor
DSP systems,” Springer Design Automation for Embedded Systems,
vol. 7, pp. 307–323, 2002.

[54] A. K. Singh, M. Shafique, A. Kumar, and J. Henkel, “Mapping on
multi/many-core systems: survey of current and emerging trends,” in
Design Automation Conference (DAC), 2013.

[55] A. L. Rosenberg, “Data encodings and their costs,” Acta Informatica,
1978.

[56] E.-G. Talbi and T. Muntean, “Hill-climbing, simulated annealing and
genetic algorithms: a comparative study and application to the mapping
problem,” in Hawaii International Conference on System Sciences, 1993.

[57] D. L. Smitley and I. Lee, “Comparative analysis of hill climbing
mapping algorithms,” Technical Reports (CIS), 1988.

[58] A. Balaji, S. Song, T. Titirsha, A. Das, J. Krichmar, N. Dutt, J. Shackle-
ford, N. Kandasamy, and F. Catthoor, “NeuroXplorer 1.0: An extensible
framework for architectural exploration with spiking neural networks,”
in International Conference on Neuromorphic Systems (ICONS), 2021.

[59] J. Chen, W.-B. Jone, J.-S. Wang, H.-I. Lu, and T.-F. Chen, “Segmented
bus design for low-power systems,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 7, pp. 25–29, 1999.

[60] T. Titirsha, S. Song, A. Balaji, and A. Das, “On the role of system
software in energy management of neuromorphic computing,” in Inter-
national Conference on Computing Frontiers (CF), 2021.

[61] S. Song and A. Das, “A case for lifetime reliability-aware neuromorphic
computing,” in IEEE International Midwest Symposium on Circuits and
Systems (MWSCAS), 2020.

[62] T. Titirsha, S. Song, A. Das, J. Krichmar, N. Dutt, N. Kandasamy, and
F. Catthoor, “Endurance-aware mapping of spiking neural networks to
neuromorphic hardware,” IEEE Transactions on Parallel and Distributed
Systems, vol. 33, pp. 288–301, 2021.

[63] A. Paul, S. Song, T. Titirsha, and A. Das, “On the mitigation of read
disturbances in neuromorphic inference hardware,” IEEE Design & Test,
2022.

[64] M. Bojarski, C. Chen, J. Daw, A. Değirmenci, J. Deri, B. Firner,
B. Flepp, S. Gogri, J. Hong, L. Jackel et al., “The NVIDIA pilotnet
experiments,” arXiv preprint arXiv:2010.08776, 2020.

