
ORIGAMI: Folding Data Structures to Reduce
Timing Side-Channel Leakage

Eric Rothstein-Morris
ISTD

Singapore University of
Technology and Design, Singapore

eric rothstein@sutd.edu.sg

Jun Sun
School of Computing and Information Systems

SMU, Singapore
junsun@smu.edu.sg

Sudipta Chattopadhyay
ISTD

Singapore University of
Technology and Design, Singapore
sudipta chattopadhyay@sutd.edu.sg

Abstract—Timing channels in a program allow attackers to
infer secret information being processed. To avoid introducing
timing channels, programmers should follow Constant-Time
Programming (CTP) guidelines or rely on repair tools that
prevent leakage of information via timing channels. Existing
repair tools prevent this leakage when programs have branches or
loops whose behaviour depends on secrets; however, these repair
tools do not efficiently prevent the leakage that occurs if the
program accesses a data structure using secret indices. In this
work, we present ORIGAMI, a set of repair rules to enforce
constant read/write operations on fixed-size, multidimensional
data structures so that accessing them via secret indices does not
leak information. We implement ORIGAMI as a series of LLVM
optimisation passes and evaluate ORIGAMI with programs from
Tomcrypt and GDK libraries. Evaluation with the repaired
programs using an accurate simulator (GEM5) confirms that
our approach indeed repairs the timing channels in practice.

I. INTRODUCTION

What are timing side-channel attacks?: Timing attacks
are among the best known side-channel attacks [5] to ex-
filtrate secret information from a program. Basic timing side-
channel attacks aim to establish a relationship between inputs
and execution time, which can be done by attackers who have a
copy of the program. After running the program with different
inputs, the attacker has a model of this input to execution-
time relationship. Attackers then observe the total execution
time of the same program run by the victim, and can infer the
value of the secret input. More advanced timing attacks exploit
micro-architectural features, e.g. caches, and they require the
attacker be able to interact with these micro-architectural as-
pects in the machine where the victim executes the vulnerable
program. Spectre style attacks [16], as discovered in 2018, are
sophisticated attacks where the attacker exploits timing covert
channels to ex-filtrate secret information loaded by speculative
execution in the cache by reverse engineering the value of
a secret input after observing cache hit/miss timings [8] or
by computing the cache lines being accessed [23]. While
Spectre attacks rely on speculative execution to load secrets
into the cache, poorly implemented cryptographic software
could directly leak secrets via memory access patterns (MAP),
without relying on speculative execution [13].

This work is partially supported by the National Research Foundation,
Singapore project 2019 ANR NRF 0092 and Ministry of Education Tier 2
project MOE2018-T2-1-098.

Repairing Leakage due to MAP.: If we assume that
attackers can only infer information from the behaviour of
the program counter, then the automatic repair of programs
with timing side-channel vulnerabilities is a well understood
problem: existing solutions [27], [31], [36] already close these
timing side-channels while preserving functionality and pre-
venting the appearance of undesired side-effects (e.g. unsafe
memory accesses). However, once we empower the attacker
to manipulate micro-architectural aspects, especially those that
breach memory isolation like the ones used for Spectre [16]
and Meltdown [21], the repairing of vulnerable programs
remains an open problem [5]. In this work, we are particularly
interested in repairing programs that leak information when a
data structure is accessed using a secret value. These programs
are vulnerable to an attacker that cannot read the contents of
the cache directly but can manipulate and observe the state of
the cache using attacks like Flush+Reload [37] or Prime+Probe
[23] to infer secrets.

Consider the example program P, defined by

if A[s] then x := 1 else y := 0,

which reveals A[s] under the baseline leakage model, because
the attacker can infer the value of A[s] by following the
program counter. The baseline leakage model assumes that
the valuations of branch conditions are exposed to attackers
(see [2, §3, Example 1]), so the program P is unsafe if A[s]
is a secret, but it is safe if A[s] is public (e.g. if A[s] is
declassified data). Existing repair tools [27], [31], [36] offer
strong security guarantees against the baseline leakage model,
and can repair the program P with respect to this leakage
model, yielding the linear-code program T(P), defined by

x := CTSel(A[s], 1, x); y := CTSel(A[s], y, 0),

where CTSel(c, a, b) is a constant-time selector which returns
a if c is true, or b otherwise. The program T(P) is arguably
safer with respect to the baseline leakage model, since the
behaviour of the program counter no longer reveals the value
of A[s]. Now, if we consider a leakage model which considers
MAP, then the program T(P) leaks s, because the attacker
can still infer s by probing the cache. Existing compiler-
based repair tools [27], [31], [36] offer weak, inefficient,
or no guarantees at all against this leakage model: Raccoon

[27] implements oblivious RAM (ORAM), which is quite
taxing in terms of performance (it induces an overhead with
geometric mean ∼ 16x); SC-ELIMINATOR [36] uses data
structure preloading, but it is an unsound repair if the attacker
can manipulate the cache; and the methodology presented in
[31] does not repair against this leakage model. This lack of
effective and efficient repair guarantees is the main motivation
for our work.

Our Contributions: The authors of [29] describe a phi-
losophy which aims to delegate the compiler the enforcement
of timing side-channel freedom. Following this philosophy,
we propose a set of repair rules to close the timing side-
channel created by accessing fixed-size data structures indexed
by secret information. Our repair rules offer strong security
guarantees with respect to the leakage model that accounts
for memory access patterns. In a nutshell, we replace each
read access y := A[x] and each write access A[x] := y by
a linear program that explores A, systematically loading it in
memory, guaranteeing that y = A[x] in the case of a read,
and that A[x] = y in the case of a write. These operations are
similar to fold high-order functions, which is why we name
our repair rules ORIGAMI.

We implement ORIGAMI as an LLVM opt pass to make it
compatible with other target-independent compiler optimiza-
tions. The tool lets the compiler first perform optimisations,
and then applies the ORIGAMI repair rules to the resulting
intermediate representation code. Our pass ensures that the
compiled programs have a constant memory footprint when
indexing fixed-size array-like data structures using secrets.
Our proposed solution only requires minimal annotation to the
source code (i.e., to inform the compiler which variables and
function arguments are secrets, and for loops whose bounds
cannot be automatically derived by the compiler) and provides
theoretical guarantees that the transformed code is secure
under the memory access pattern leakage model.

There are a couple of clear limitations when repairing
programs with ORIGAMI, (e.g. ORIGAMI can obfuscate a
read access to a data structure whose values are secret pointers,
but fails to protect the program if such resulting pointer is
later used to load or store a value) which we discuss in
Section IV-D. These limitations illustrate the impossibility of
repairing every program with respect to the MAP leakage
model while keeping the program functional, efficient, and
secure.

This paper is structured as follows. We first provide a brief
background in Section II. In Section III, we formally define
timing side-channel freedom (TSCF) under the MAP leakage
model, which is the property that we want to enforce. We
present the ORIGAMI repair rules in Section IV, and we
prove that they enforce TSCF under MAP for a language
of while-programs; we also discuss the limitations of this
enforcement. In section V, we evaluate an implementation
of the ORIGAMI rules as LLVM optimization passes; we
use these passes to enforce TSCF in LLVM-IR after all other
compiler optimizations have taken place. We apply ORIGAMI
to a small toy example and to real cryptographic ciphers from

Tomcrypt [20] and to GDK library routines [32], [32], and
we evaluate all the repaired programs using GEM5 – a cycle
accurate simulator for x86 processor – to empirically show
that all repaired programs satisfy TSCF with respect to MAP
leakage. We then compare ORIGAMI against related work in
Section VI, and we conclude in Section VII.

II. PRELIMINARIES

In this section, we provide the definitions and notation that
we use through this work.

A. Timing Side Channel Freedom Enforcement

Why are timing side-channel vulnerabilities so hard to
fix?: Both the programming languages and the computer
security communities understand fairly well where timing
differences could be introduced during the compilation and
execution processes of software, and they tackle the problem
of enforcing timing side-channel freedom (TSCF) using a
layered approach. Unfortunately, timing differences can be
(unintentionally) introduced at every step of the compilation
process, and they propagate to the following stages.

For illustration purposes, let us consider a simplified version
of the compilation and execution process. A program starts
out as source code, which is then given to a compiler. The
compiler often creates an intermediate representation (IR) of
the program (e.g. a control flow graph (CFG)), which the
compiler then optimises by using transformation rules that can
be applied to any IR (e.g. dead-code elimination). We call the
entity in charge of creation and optimisation of the IR the
front-end of the compiler. The back-end of the compiler then
compiles the optimised IR into a microarchitecture-dependent
low-level representation (LLR), performs microarchitecture-
dependent optimisations, and then creates the executable.
Finally, the executable runs on the microarchitecture by fol-
lowing the sequence of instructions in the executable.

At the source code level, a developer who does not fol-
low constant-time programming guidelines, e.g., CryptoCod-
ing [3], can introduce timing differences by, e.g., using loops
with input-dependent bounds, or by terminating early if a
branch condition is satisfied, e.g. in a base case of a recursive
functions. At the IR level, since compilers often optimise
for performance, they may introduce timing differences via
optimisations at the IR level, just like a programmer would at
source level. To make matters more complicated, the compiler
may even remove TSCF countermeasures introduced at the
source code level if it deems them non-optimal, which is why
developers of crypto algorithms disable compiler optimisa-
tions, or even choose to avoid compilers altogether and instead
directly implement crypto routines in assembly [5].

Then, the back-end repeats the story of the front-end: it
creates the LLR, optimises it and creates the executable, but
its own optimisations may remove any TSCF enforcement
introduced in the IR, and it may itself introduce timing differ-
ences. Finally, even if the back-end does not itself introduce
timing differences or removes countermeasures added at the
previous stages, the microarchitecture may manifest timing

differences during program execution; this may be because
a micro-architectural instruction can vary its execution time
depending on its parameters (e.g. multiplication), or due to
out-of-order execution and speculative execution. In that sense,
any TSCF enforcement introduced at early stages can be made
irrelevant at later stages.

B. Leakage Models

We find the notion of leakage models used in
ct-verif [2] particularly enlightening. Although their
leakage models are defined based on LLVM rather than
machine code, they argue in [2, §5] that “LLVM assembly
code produced just before code generation [is] sufficiently
similar to any target-machine’s assembly code to provide a
high level of confidence.”

In the following, we provide the intuition behind three
useful leakage models, what it means for a program to leak
secrets with respect to them, and insights on what repairing a
program with respect to each model entails.

Baseline Leakage Model: This leakage model reveals
to the attacker the valuations of branch conditions. More
precisely, the program if c then p1 else p2 reveals the
valuation of c, and the program while c do p reveals the
valuation of c. This is the baseline leakage model because it
is implied by all other leakage models.

A program leaks secrets with respect to this model if secrets
influence the behaviour of the program counter, which is
why it is also known as the program counter security model
[24]. To repair a program with respect to this model, secret-
dependent branches are linearised by replacing conditionals
with constant-time selectors and loops are fully unrolled. This
causes the behaviour of the program counter to be independent
of value of secrets.

Memory Access Patterns Leakage Model (MAP): in addi-
tion to revealing the valuation of branch conditions, the MAP
model reveals the indices used to access data structures. More
precisely, the programs

A[x] := y, and y := A[x]

each reveals x because different indices may have different
memory access patterns (e.g. when the cache lines for A[x] and
A[x′] are different), and the attacker can infer this information.
Thus, a program leaks secrets under the MAP model if they
are used to access data structures [2]. This leakage model is
related to memory trace obliviousness [22], which requires
constant behaviour of the memory for all public-equivalent
traces. To avoid leakage under the MAP model, we must
not use secrets when accessing data structures, and we must
enforce a secret-independent behaviour on the program counter
(to avoid leakage following the baseline model).

SC-ELIMINATOR proposes the use of preloading and must-
hit analysis to repair programs so that they satisfy TSCF under
the MAP leakage model. Unfortunately, this repair implicitly
assumes that the state of the cache during must-hit analysis
is the same as when the program executes, which is a prob-
lematic assumption if we consider that the attacker can also

manipulate the cache using Prime+Probe and Flush+Reload
attacks. Instead of preloading, we propose a new repair rule
where instructions accessing data structures using secrets,
i.e.A[x] := y and y := A[x], have the constant memory access
patterns, thus preventing leaks under the MAP. The details of
this solution are explained in detail in Section IV.

Operand Sensitive Leakage Model (OS): For complete-
ness, we include the leakage model that distinguishes opera-
tions whose execution time is sensitive to inputs. The program
y := f(x) leaks its parameter x if its total execution time
depends on x. This leakage model implies the MAP and
baseline models. Repairing programs with respect to the OS
model at the source or compiler level is challenging because
some operations offered by the micro-architecture leak their
parameters (e.g. division); thus, solutions for the OS model
may need to be target dependent. Enforcing TSCF with respect
to this leakage model is outside the scope of this work.

C. TSCF Under MAP Leakage - Informally

The MAP leakage model represents an attacker that is able
to use the timing of hits and misses in the cache to indirectly
obtain values from the cache, similar to what attackers relying
on Spectre attacks do to recover the secrets loaded in memory.
More precisely, if an array-like structure A is large enough to
require several cache lines for it to be fully loaded in the cache,
then caching A[s] only fills the cache line that corresponds to
the index s and its neighbouring values. An attacker can gain
information about s by probing the cache, testing which parts
of A result in a cache hits and which ones do not. For example,
the program if s < sizeA then x := B[A[s]] reveals s
and A[s] under the MAP leakage model, because the state of
the cache is different for different values of s. This program
does not reveal B[A[s]], only the indices used to access it.

D. Guarded Kleene Algebra with Tests (GKAT)

Guarded Kleene Algebra with Tests (GKAT) is a modern
formalism that offers a propositional abstraction of imperative
while-programs with uninterpreted actions [30]. The specialty
of GKAT is to enable reasoning about properties of programs
by merely looking at their structure and not at their (func-
tional) semantics. This makes GKAT interesting for modelling
transformations at the compiler level [18], because a general-
purpose compiler should not need know the exact semantics
of a program to optimise it; in general, the compiler should
look for structural patterns which enable optimisations, just as
GKAT does for reasoning.

We use GKAT to provide a formal foundation in reasoning
about TSCF for arbitrary programs. Specifically, the axioms
and rules for GKAT expressions help us reason about the
equivalence of programs. In this setting, the notion of se-
mantic equivalence is defined over uninterpreted actions using
languages of guarded strings, defined using actions and tests.

Actions, Tests and Expressions: Every GKAT is
parametrised by a set of abstract actions Σ and a finite set
of abstract primitive tests T . We assume T and Σ are disjoint
and non-empty. A test t ∈ T is an atomic proposition about

b, c, d ∈ B ::=
| 0 False
| 1 True
| t ∈ T t
| b · c b and c
| b+ c b or c
| b̄ not b

e, f, g ∈ GKATx ::=
| p ∈ Σ do p
| b ∈ B assert b
| e · f e;f
| f +b g if b thenfelse g
| e(b) while b do e

Fig. 1: Left: boolean expressions. Right: GKAT expressions
(from [30]).

the state of the program, and the execution of an action p ∈ Σ
can affect the state. We form GKAT expressions (GKATx) with
the grammar presented in Figure 1.

Atoms: An atom is a truth assignment of all the tests
in T . We denote atoms by α, β, and γ, and the set of atoms
by At. For example, if T = {t1, t2}, the boolean expressions
α = t1 · t2, β = t1 · t2, γ = t1 · t2, and δ = t1 · t2 are all the
atoms, where ti is the complement of ti, for i ∈ {1, 2}.

Guarded strings are an intercalation of a logical atom
and an action, which can be seen as the concatenation of
{pre} {action} {pos} elements, where pre and pos rep-
resent the precondition and postcondition of the action (any
pre and any pos as we work with uninterpreted actions, but
a pos and a pre need to be compatible to be concatenated).

Guarded Strings: A guarded string g is an element of the
set GS := At · (Σ · At)∗, and it models a trace of an abstract
program. To compose guarded strings, we use fusion product
� : GS× GS→ GS, a partial function defined by

wα � βv ,

{
wαv, if α = β;

undefined, otherwise.
(1)

The fusion product of sets L1, L2 ⊆ GS is defined by

L1 � L2 , {g1 � g2 | g1 ∈ L1, g2 ∈ L2, and g1 � g2 is defined} .

Language-based Semantics: The language-based seman-
tics of a GKATx is a set of guarded strings (i.e., a language)
defined by

JpK , {αpβ | α, β ∈ At} ,
JbK , {α | α ∈ At and α⇒ b} ,

Jf · gK , JfK � JgK ,

Jf +b gK , (JbK � JfK) ∪ ((At− JbK) � JgK),
r
e(b)

z
,

⋃
n≥0

(JbK � JeK)n � (At− JbK),

where L0 , At and Ln+1 , Ln�L, for L ⊆ GS. Since actions
in GKATx are uninterpreted, language-based semantics are an
over-approximation of functional semantics.

Rules: A GKAT rule is an equivalence that lets us trans-
form an arbitrary GKATx into a GKATx that is syntactically
different, yet semantically equivalent; e.g., b · (e +b f) ≡ b ·e.

III. FORMALISING TSCF WITH MAP

Informally, TSCF means that all secret-dependent program
traces have very similar execution time. If we model program
traces using guarded strings, then the execution time of a
program trace is the sum of the execution time required by
each of its actions. To quantify the execution time of actions,
we use a time metric.

A time metric associates each actions in a program trace
with a time consumption. Under the MAP leakage model, an
action p may consume different amounts of time depending
on the state of the cache when p is executed: if a results in
several cache hits then it consumes less time than it would if
a resulted in several cache misses. Thus, the memory access
pattern of a program trace directly impacts its execution time.
We formalise this notion with the metric mem.

The mem Time Metric: Let V (p) be the variables used
in the action p, let ω : GS × V → B be a function where
ω(g, v) states if the variable v is in the cache after executing
g (or after executing nothing if g ∈ At), let hitg(p) ,
{v ∈ V (p)|ω(g, v)} be the set of variables in p that are present
in the cache, and let missg(p) , {v 6∈ V (p)|ω(g, v)}; we
define mem(g)(p), the MAP of p (with respect to g), by

mem(g)(p) = η × missg(p) + µ× hitg(p)

where η, µ ∈ R+ are constants with η being much greater
than µ, respectively modelling the time to load a variable from
memory and the time to load a variable from the cache.

Given a GS g, the MAP of g, denoted RCmem(g), is the
accumulated MAP of its actions; formally,

RCmem(g) ,

{
0, if g ∈ At;
RCmem(h) + mem(h)(p), if g = h · p · α;

The metric mem is causal, since the resource consumption of
actions depends on the history of the execution.

Now, consider two values for a secret s, say s = 0 and
s = n; the mem values of x := A[s] is

mem(1)(x := A[s]) = η × {x,A[0], s}+ µ× ∅, if s = 0,

mem(1)(x := A[s]) = η × {x,A[n], s}+ µ× ∅, if s = n.

The secret s leaks because the MAP of the expression x :=
A[s] depends on the value of s.When A[0] and A[n] are loaded
into the cache, and they are placed in different regions of the
cache; thus, the attacker can infer the value of s by looking
at which regions corresponding to A are loaded.

Constant MAP.: Given a language of guarded strings L ⊆
GS, we say that L has constant resource consumption with
respect to mem if and only if RCmem(g1) = RCmem(g2) for all
g1, g2 ∈ L.

Constant resource consumption in its current form requires
all GS in the language L to have the same resource consump-
tion. However, a program that has no secret values trivially
satisfy this property, since there are no secrets that could
be leaked. Thus, we need to enrich the current definition
of constant resource consumption so that we only require
traces that exclusively differ on secret values have the same

resource consumption. As it is standard (see e.g., [2], [24]),
we introduce a notion of public equality.

Let V be the set of public variables, and let JV K be the set of
valuation functions which map variables to values; we extend
the notion of guarded strings so that they are now generated
by the grammar

GS := (JV K× At) · (Σ · (JV K× At))∗ .

Now, guarded strings satisfy one of the patterns (Γ, α) or
(Γ, α)·p·g, where Γ is a valuation of the public variables, α is
an atom and g is a guarded string. Two guarded strings g1 and
g2 are equal on their public variables, denoted g1 =p g2, if and
only if their initial valuations are equal on public variables.

We now define a formal notion of constant resource con-
sumption, which we apply to the mem metric.

Definition 1 (TSCF with MAP). Given a language of guarded
strings L ⊆ GS, we say that L has secure constant time
consumption guarantees with respect to mem if and only if,
for all g1, g2 ∈ L :

g1 =p g2 ⇒ RCmem(g1) = RCmem(g2).

Equivalently, we say that L satisfies TSCF.

This definition naturally extends to GKATx. A GKATx e
satisfies TSCF if and only if JeK satisfies TSCF.

Attacker model: Definition 1 characterises an attacker
model where the attacker that can choose all the values of
public variable before execution of every GKATx and, at the
end of the execution of the GKATx, can measure the total
number of hits and misses to the cache. Additionally, the
attacker can execute Prime+Probe [23] or Flush+Reload [37]
attacks, either remotely or locally. More precisely, this attacker
can see which addresses are loaded in the cache but cannot
see their contents, and can flush the cache at will. This
attacker is similar to the attacker which exploits a Spectre V1
vulnerability to extract secrets via the cache, but our attacker
does not rely on speculative execution (speculative execution
is beyond the scope of this work).

In the following sections, we provide a concrete GKAT for
an enriched language of while-programs. Using this GKAT,
we describe existing repair rules used by other repair tools to
enforce TSCF under the baseline leakage model. We discuss
why these rules are not enough to enforce TSCF under the
MAP leakage model, and we propose our own set of rules to
fill this gap.

IV. REPAIRING TSCF UNDER MAP WITH ORIGAMI

Existing program repair solutions for TSCF [27], [31], [36]
offer high-overhead, unsound guarantees, or no guarantees at
all with respect to the MAP leakage model. Raccoon [27]
implements ORAM to enforce TSCF in the MAP leakage
model. While secure, the use of ORAM is quite taxing in terms
of performance overhead. This overhead is unfortunate, which
is why we look for other software/compiler-based alternatives
to repair TSCF for the MAP model. SC-ELIMINATOR [36]
uses must-hit analysis and data structure preloading to enforce

TSCF in the MAP leakage model. However, the solution
presented is unsound when we consider that the attacker
can manipulate the cache. More precisely, SC-ELIMINATOR
implicitly assumes that the state of the cache during the must-
hit analysis is maintained through execution, which is not true
since the attacker can flush the cache after data structures have
been preloaded, rendering the must-hit assumptions invalid.
Finally, the methodology presented in [31] only offers security
guarantees with respect to the baseline leakage model, and not
with respect to the MAP leakage model.

In the following, we present an enriched language of while-
programs, and we study the possible causes for different MAP.
First, we define a concrete GKAT and give more precise
definitions about what their time consumption means. Then,
we formally present the ORIGAMI program transformation
rules, and we justify their soundness formally; i.e., we prove
that they enforce TSCF for the MAP leakage model. Then,
given that the MAP model implies the baseline model, we
include for completeness the well-known repair rules used to
repair branches and loops. We proceed to discuss limitations
of enforcement, and finally we show a natural extension of
ORIGAMI from arrays to multidimensional fixed-size data
structures.

A. A Concrete GKAT

We want to keep the GKAT as abstract as possible, but we
do need to define when a variable hits or misses the cache.

We start small by considering uni-dimensional arrays. Let
V be the set of variables names; let S be the set of names
of arrays. Let ~S ∈ S , x ∈ V and n ∈ N; we define the set of
atomic expressions A by the grammar

a ∈ A ::= x | n | ~S[x] | ~S[n].

We define the set of tests T by the grammar

t ∈ T ::= a1 = a2, with a1, a2 ∈ A .

Let a1, a2, a3 ∈ A , b ∈ B; we define the set of actions Σ
by the grammar

p ∈ Σ ::= a1 := a2 | a := sel(b, a1, a2)

The semantics of the language is standard, and we omit the
details since they are largely irrelevant for the purposes of
enforcing TSCF under the MAP leakage model. More pre-
cisely, we care when and where we load elements in the cache,
independently of the functional semantics of an action. Nev-
ertheless, we assume that the compiler discards expressions
that are not well-formed (e.g. 1 := A[x]). We consider nested
expressions to be using syntactic sugar; e.g. A[x] := B[C[x]]
is equivalent to x1 := C[x] · x2 := B[x1] ·A[x] := x2.

B. ORIGAMI Rules

It is impossible to repair programs that are not TSCF with
traditional GKAT rules. Since GKAT rules preserve semantics,
non-TSCF expressions are never transformed into TSCF
expressions via these rules. Thus, for the purposes of enforcing
TSCF, we assume two equivalences between actions and

GKATx: the read equivalence (y := A[x]) ≡ O(y := A[x])
and the write equivalence (A[x] := y) ≡ O(A[x] := y),
where A has a fixed size of n+ 1,

O(y := A[x]) ,

acc := sel(x = 0, A[0], acc)·
acc := sel(x = 1, A[1], acc)·
. . .

acc := sel(x = n,A[n], acc)·
y := acc;

O(A[x] := y) ,

A[0] := sel(x = 0, y, A[0])·
A[1] := sel(x = 1, y, A[1])·
. . .

A[n] := sel(x = n, y,A[n]).

We respectively denote the read ORIGAMI rule and the
write ORIGAMI rule by (y := A[x]) O(y := A[x]) and
(A[x] := y) O(A[x] := y). Functionally, these read and
write rules are sound: O(y := A[x]) implements an iteration
over A, loading every value A[i] but only storing it in acc
if i = x, and O(A[x] := y) also implements an iteration,
which loads A[i] and stores it back at A[i] if i 6= x, or
loads A[i] but stores y otherwise. These rules lift naturally to
multidimensional arrays.

We now provide an argument for why these rules are sound
with respect to TSCF. We assume that 0 ≤ x ≤ n, which we
consider a reasonable assumption since in many languages the
semantics of the expression A[x] where x > n is undefined
or triggers an exception. To show why O(y := A[x]) is TSCF
with respect to the MAP leakage, we do a proof by induction
on the size of A.

Theorem 1. Let A be an array-like data structure of size n+1
with n ∈ N, then JO(y := A[x])K satisfies TSCF with MAP.

Proof. The intuition behind the proof is the following: this
ORIGAMI rule expands a single access to the data structure
A into a constant sequence of accesses to A with fixed
parameters, folding a sel instruction to accumulate the value
that would be computed by the access A[x]; since the new
sequence of accesses to A is independent of x, the MAP of
O(y := A[x]) does not leak x.

We use a similar argument to prove TSCF of O(A[x] := y)
expressions.

Theorem 2. Let A be an array-like data structure of size n+1
with n ∈ N, then JO(A[x] := y)K satisfies TSCF with MAP.

Proof. This ORIGAMI rule also expands the single access
A[x] into a constant sequence of accesses to A with fixed
parameters, but this time it loads from every position of A,
and it stores a value chosen via a sel; again, since this new

sequence of accesses to A is independent of x, the MAP of
O(A[x] := y) does not leak x.

C. Repair Rules for the Baseline Model
Since the MAP implies the baseline model, we must repair

programs also with respect to the baseline model. The baseline
repair rules are well known, but we briefly mention them here
for completeness. Existing repair tools, including [27], [31],
[36], are in general capable of repairing programs with respect
to the baseline leakage model using the following repair
rules, whose basic strategy consists of removing branches via
predication and by unrolling loops once they have been fixed
to have a constant number of iterations.

Branch predication: Given a program of the form

if b then x := e1 else x := e2

whose corresponding GKATx is (x := e1) +b (x := e2), the
predication repair rule replaces the branch by the select
instruction x := sel(b, e1, e2). The tools [27], [31], [36]
implement this rule to remove leaks due to branching. There
are a couple of minor complications; repairing the GKATx
(a := b/c) +c6=0 1 could introduce runtime exceptions that
were previously prevented by the conditional (e.g. division by
zero or accessing an array out of bounds). However, it suffices
to take a couple extra precautions before repair, as shown in
[27] and [31].

Loop Unrolling: Given a program of the form

while b do e

which corresponds to the GKATx e(b), the loop unrolling
rule replaces the program with a sequence of linearisable
branches

(e +b 1) · (e +b 1) · . . . · (e +b 1)︸ ︷︷ ︸
k times

.

where k is the maximum number of iterations that the loop
could execute for all secrets.

The major complication to apply the loop unrolling rule
is determining k. Raccoon does not protect information leaks
from loop trip counts [27], so they cannot repair programs
with loops whose trip count is originally secret dependent.
SC-eliminator arbitrarily chooses a value from a list of
fixed sizes (e.g. 64, 128, 256) depending on static analysis,
[31] assumes that loops are already unrolled, and [27] do not
protect against information leaks from loop trip counts.

Limitations of Predication and Unrolling: Neither pred-
ication nor unrolling repair programs with respect to the
MAP leakage model. The loopless and branchless program
x := A[s] where s is a secret and A is a data structure has
different memory access patterns for the different values of s;
this limitation is the main motivation for ORIGAMI.

Vulnerable to OS Leakage: Since the MAP leakage
model is weaker than the OS leakage model, ORIGAMI does
not repair timing side-channel vulnerabilities that arise by the
use of operations whose execution time varies depending on
their parameters. We only repair leakage that occurs due to
accesses to data structures using secret indices.

D. Limitations of ORIGAMI

Secret Pointers: While we can fold a data structure whose
data are secret pointers without revealing the value of the
resulting pointer or the value used to access it, once this
resulting pointer is loaded, it is leaked to the attacker via the
cache. Thus, ORIGAMI should not be used to repair programs
which contain secret pointers that are naively accessed.

Secret Data Structure Sizes: The MAP of O(y := A[x])
and of O(A[x] := y) depends on the size of A. This adds
a caveat for using ORIGAMI to enforce TSCF under MAP:
the size of data structures indexed by secrets must be public,
since the size of A can be inferred via timing. We believe this
caveat is acceptable, since several cryptographic algorithms
fix the size of the data structures that hold secrets (e.g. AES
has key sizes 128, 192 or 256 bits). We also believe this case
is dual to trying to repair a loop by unrolling it if the loop
bound depends on an unbounded secret: it is impossible to
repair without compromising its functionality [31], [36].

Out-of-bounds Accesses: As a side-effect of applying the
ORIGAMI rules, accessing a data structure A of size n using
a sensitive index x such that x > n no longer results in
a runtime error. The repaired version of y := A[x] simply
sets y to the initial value of the accumulator acc if x > n.
Similarly, a repaired version of A[x] := y where x > n
never stores y; it simply loads all A[i] and writes them back.
Consequently, these new behaviours leak to the attacker the
information x > n, assuming that n is public. This limitation
is arguably artificial, since the original program possibly also
leaks this information through a runtime error.

Vulnerabilities Beyond MAP: As we previously stated,
ORIGAMI does not offer security guarantees for programs
that are vulnerable due to speculative execution or that are
vulnerable in the OS leakage model, since these have leakage
and attacker models that are beyond the scope of this work.

V. EVALUATION

Three research questions motivate the following empirical
evaluation:
• RQ1: How effectively can we enforce TSCF?
• RQ2: How efficiently can we enforce TSCF?
• RQ3: How do our enforcement results vary when com-

piler optimizations are considered?
We divide the evaluation of ORIGAMI into two sections:

1), an example program written in C, vulnerable with respect
to the baseline leakage model, which illustrates what to expect
when repairing programs with ORIGAMI, and 2) a set of three
test programs from real libraries (also written in C): we test the
rijndael_setup function from the AES implementation
in libtomcrypt [20], and the functions gdk-keyname and
gdk-keyuni from the GDK Linux library.

A. Implementation

We implement the ORIGAMI repair rules presented in
Section IV using LLVM (version 13) as compiler optimisation
passes. The compilation chain is as follows: using clang with
either the -O0 or the -O3 optimisation flag, we create an

intermediate representation in LLVM-IR. This IR representa-
tion has been already optimised by clang, so we can apply
the ORIGAMI rules without fearing them being removed by
the optimization passes. Finally, to obtain an executable, we
use llc with disabled optimizations (i.e., using the -O0 flag)
to compile and link the repaired LLVM-IR. The following
experiments show that ORIGAMI rules are preserved by this
final compilation step with disabled optimisations.

To mark which variables hold secrets, we rely on compiler
annotations. Unfortunately, we did not find any reliable tool
that performs taint propagation and analysis from the source
language C to LLVM-IR, which is why we implement one. We
provide the details of the tainting procedure in Section V-C.

B. Experimental Setup

We use Gem5 [9] to evaluate the efficiency, effective-
ness and compatibility with compiler optimisations of the
ORIGAMI repair rules. Gem5 is a highly-configurable simula-
tor which encompasses system-level architecture and processor
micro-architecture. The setup for the simulated environment in
Gem5 consists of a single TimingSimpleCPU with a 1GHz
processor that possesses only a level one 2-set associative
cache, which has a cache-line size of 32 bytes; the data cache
has size 8kB and the instruction cache has size 16kB. Gem5
provides statistical data from the execution of binaries, includ-
ing, among other metrics, the number of CPU cycles and the
number of hits and misses on both data and instruction caches.
We measure the variance of these metrics to evaluate the
effectiveness of TSCF enforcement (RQ1). We use the growth
factor mrepaired/moriginal of each metric m to evaluate the
efficiency of TSCF enforcement (RQ2). Finally, to evaluate
the compatibility of ORIGAMI with compiler optimisations
(RQ3), we repair executables compiled with O0 and with O3
to see if there are any significant differences.

For each benchmark, we generate a set of five random secret
inputs. We use these five instances of the secret to obtain the
following metrics: the number of CPU cycles, and the number
of hits and misses on both data and instruction caches. An
implementation is vulnerable with respect to the MAP leakage
model if there is variance in the numbers of cache hits or
misses. Similarly, an implementation is vulnerable with respect
to the OS leakage model if there is variance in the numbers
of CPU cycles. The ORIGAMI rules are effective at repairing
programs with respect to the MAP leakage model if, for all
original programs that are vulnerable with respect to MAP,
they are no longer vulnerable with respect to MAP after their
repair. Since ORIGAMI does not repair with respect to the OS
leakage model, we do not expect the variance of CPU cycles
in repaired programs to be zero, which means that they remain
vulnerable with respect to OS.

C. Taint Analysis

We follow the philosophy presented by the authors of [29],
where the programmer works together with the compiler to
enforce TSCF. In our case, the programmer must provide the
information that the compiler cannot derive on its own to

apply the repair rules, i.e., which variables contain secrets,
the maximal loop bounds of loops that depend on secrets, and
which functions should not be inlined by the compiler to make
the repair process more efficient. For that, the programmer
should annotate the source code as follows: 1) annotate secret
variables at their declaration, 2) annotate sensitive loops by
giving them a maximum constant integer loop bound, and
3) annotate functions that manipulate secrets such that the
compiler does not inline them.

We mark the variables that contain secrets with the an-
notation __attribute__(annotate("secret")). We
refer to these annotated variables as taint sources. When-
ever ORIGAMI finds a loop whose bound depends on a
secret and no bound has been provided, ORIGAMI re-
jects the program and asks the programmer to provide the
annotation __attribute__(annotate("bound=N"))
on the respective taint source, where N is the max-
imum number of times the loop could iterate given
any secret. Finally, the programmer should the annotation
__attribute__((noinline)) at function declarations
to prevent the inlining of functions that manipulate secrets,
since that would unnecessarily increase the size of the repaired
binaries (especially when loop unrolling is applied). AS a
consequence, our taint analysis is not inter-procedural, and the
programmers must annotate secret variables and parameters in
each function.

To implement taint propagation from C to LLVM-IR, we
identify the taint sources at the IR level, and we propagate the
taint using both data and control flow dependencies, which we
obtain from analysis passes included in LLVM.

D. Proof of Concept (POC)

Let A[10][10] be a two-dimensional data structure of size
10×10 with randomly generated integer values; now, consider
the program

int secret1 = N % 10, secret2 = M % 10;
for (int i=0; i<secret1; i++)

for (int j=0; j<secret2; j++)
A[j][i]=A[i][j];

where N and M are randomly generated secret integers. This
program is vulnerable with respect to both the baseline leakage
model and the MAP leakage model. The loop bound of the
outer loop depends on N and the loop bound of the inner loop
depends on M. The first access we perform in the data structure
is A[N][M], which leaks both N and M according to the MAP
leakage model. ORIGAMI needs to fix both the dependence
of loop bounds on secrets and the MAP for this program so
that it is constant. We present the metrics of executing the
repaired version of this program in Table I.

a) Results Analysis.: In both O0 and O3, the original
program displays variance in the metrics of the instructions
and data cache. After applying ORIGAMI, the variance is zero
in all metrics, which confirms that the repair tool is forcing
constant accesses to A, and it is ensuring that no information
leaks due to MAP. We remark that the number of CPU cycles

(column NumCycles) has a variance of zero, meaning that
the repaired version does not leak with respect to the OS
leakage model; however, this is due to the repaired program
not using CPU operations whose execution time depends on
secrets (other benchmarks do not satisfy this condition).

Repairing programs which contain loops whose trip counts
depend on secrets can exponentially increase the size and
execution time of programs. The POC program uses secrets
which range from 0 to 9, and loops iterate a different number
of times depending on the value of the secrets. ORIGAMI
enforces TSCF without sacrificing functionality by forcing the
program to run the outer loop 10 times and the inner loop
10 times no matter which secrets are provided, obfuscating
no-ops to preserve functionality with sel instructions. This
exponential growth is unavoidable, otherwise the secrets would
leak via the timing channel.

The overhead for repairing the POC program (column
Factor) is high: 5.11x for O0 and 30.2x for O3. To repair
this program, ORIGAMI must first force both loops to have
the same number of iterations independently of the secret
given, so the program transforms from one with an average
of 25 assignments per execution to a program which always
performs 100 assignments per execution. Secondly, ORIGAMI
folds each of those 100 assignments over A, forcing the MAP
to be constant and preventing the secrets from leaking via
the cache under the MAP leakage model. Then, by applying
loop unrolling, ORIGAMI prevents secrets from leaking via
the program counter.

The excessive overhead incurred by repairing this program
may be discouraging at first, but it is mainly due to loop
unrolling, which is not always required for sensitive programs.
We note that Raccoon does not repair programs with sensitive
loop trip counts like the POC, so we believe that their mean
16x performance overhead is only valid for programs which
do not have sensitive loops. In the following, we compute the
overhead of repairing programs that require little or no loop
unrolling to be repaired.

E. ORIGAMI on AES and GDK

We now describe the other example programs that we
used for benchmarking ORIGAMI, and we briefly explain the
results of the experiments. We repair the rijndael_setup
function from the Advanced Encryption Standard (AES)
implementation in libtomcrypt [20], and the functions
gdk_unicode_to_keyval and gdk_keyval_name of
the Linux GDK library.

AES is a specification for data encryption to establish
secure communication, which receives a plaintext message
and as an array of size 16 bytes as secret inputs (i.e., a
key). The rijndael_setup function performs a series of
memory accesses to setup the forward key. The function
gdk_unicode_to_keyval converts a secret ISO10646
character to a key symbol [32]. The secret input is a single
unsigned integer value. This function uses a binary search
that depends on a secret input, and it loads from a structure
using a secret index during that binary search. The function

TABLE I: Simulation Results for the POC

Optimization O0 Optimization O3
Metric Average Variance Average Variance

Orig. Rep. Factor Orig. Rep. Orig. Rep. Factor Orig. Rep.
Size 16504 884856 53.615 0 0 16504 6082680 368.558 0 0
NumCycles 606469.2 3098976 5.11 1908459.2 0 604672.8 18269050 30.213 169281.2 0
Icache hits 114734.2 397059 3.461 197395.7 0 114214.2 1829849 16.021 13854.2 0
Icache misses 931 14535 15.612 0 0 930.6 95739 102.879 0.8 0
Dcache hits 114734.2 397059 3.461 197395.7 0 114214.2 1829849 16.021 13854.2 0
Dcache misses 931 14535 15.612 0 0 930.6 95739 102.879 0.8 0

TABLE II: Metrics for AES and GDK

O0 O3
Metric Average Variance Average Variance

Orig. Rep. Factor Orig. Rep. Orig. Rep. Factor Orig. Rep.
Tomcrypt AES

Size 33296 33296 1 0 0 33232 33232 1 0 0
NumCycles 904893.7 898276 0.993 148556.33 0 902331.9 895064 0.992 98294.94 0
Icache hits 113393 113002 0.997 0 0 112650 112428 0.998 0 0
Icache misses 1489 1479 0.993 0 0 1493 1476 0.989 0 0
Dcache hits 28246.9 28014 0.992 7.99 0 27809.35 27776 0.999 7.71 0
Dcache misses 3822.1 3785 0.99 7.99 0 3819.65 3777 0.989 7.71 0

gdk_unicode_to_keyval

Size 22520 51192 2.273 0 0 20520 192552 9.384 0 0
NumCycles 885008 1042148 1.178 75162 0 882540.8 1626899.6 1.843 13443.2 179828.8
Icache hits 112674.2 122967 1.091 361.7 0 112553.8 159844 1.42 43.2 0
Icache misses 1474.4 2428 1.647 0.3 0 1469 6880 4.683 0 0
Dcache hits 27868.8 30970 1.111 64.7 0 27754.8 28742 1.036 0.2 0
Dcache misses 3779.6 3927 1.039 0.8 0 3782 3794 1.003 0 0

gdk_keyval_name

Size 49456 53552 1.083 0 0 49080 368568 7.51 0 0
NumCycles 903146.4 907018 1.004 7840.8 0 900839.2 2269991.2 2.52 819.2 54915.2
Icache hits 112741.2 114045 1.012 24.2 0 112558.4 199660 1.774 0.8 0
Icache misses 1470 1604 1.091 0 0 1466 11481 7.832 0 0
Dcache hits 27719.6 28341 1.022 1.8 0 27600 28661 1.038 0 0
Dcache misses 3936 3774 0.959 0 0 3936 3950 1.004 0 0

gdk_keyval_name converts a key value into a symbolic
name [32]. The secret input k is a single unsigned integer.

The metrics of the repaired version of these functions appear
in Table II. We conclude that ORIGAMI successfully repairs
all studied functions with respect to the MAP leakage model,
because the variance in the number of hits and misses in
both caches is zero for all repaired benchmarks. We also
confirm that compiler optimisations can cause a program that
was originally safe with respect to the OS leakage model
to become vulnerable. Nevertheless, ORIGAMI is compatible
with compiler optimisations, since the repairs can be applied
after compiler optimisations, and preserved in the last steps of
the compilation chain.

If we take the number of CPU cycles as a measure of time,
then the overhead of applying ORIGAMI in these benchmarks
has a geometric mean of 1.23x, which is significantly better
than the 16x overhead incurred by Raccoon. The high
variation in the number of CPU cycles that we observe in
Table II in the repaired versions of O3 optimised programs
is due to the aggregation of operand-sensitive instructions
(e.g., addition and multiplication); although these instructions

are executed the same number of times, there is a direct
relationship between the number of CPU cycles and the value
of input parameters, which causes variance in the total number
of CPU cycles for different values of the secrets.

In some cases, the repair slightly affects the program posi-
tively in terms of performance. We speculate that this is caused
by ORIGAMI forcing the control flow graph (CFG) to match
the structure of a GKAT expression: during the transformation,
the LLVM pass manager might optimise some parts of the
code, compensating the overhead introduced by the repair and
improving overall performance.

This evaluation reinforces the philosophy of [29]: compilers
can be empowered to close timing-side channels automatically,
and programmers need only worry about providing the right
information to the compiler; independently of whether the
programmer follows CryptoCoding guidelines or not.

VI. RELATED WORK

We classify existing solutions for closing timing side-
channels proposed by researchers in both computer security

and programming languages into two complementary cat-
egories: verification and testing solutions and enforcement
solutions.

Verification and Testing Solutions.: These solutions help
us determine whether a system has timing side-channel vul-
nerabilities, but they do not offer automated repair solutions.
ORIGAMI is a static enforcement repair solution, so it does
not fit the verification and testing category. However, we
believe that ORIGAMI could be used in conjunction with these
solutions to check which programs effectively need repair and
avoid applying ORIGAMI unnecessarily.

There are verification solutions for source (e.g.,
ABPV13 [4],Low∗ [26] and [25]), intermediate (e.g.,
[2], [28]), assembly (e.g., [1], [10]) and binary (e.g., [14],
[17]) levels. We refer the interested reader to Barbosa et al.
[5, §IV], which contains an overview of tools for side-channel
resistance. The verification procedure presented in [6] does
not determine whether programs satisfy TSCF or not; instead,
they verify whether compilers preserve the cryptographic
constant-time properties of programs during compilation.
This is a better guarantee that just trusting the compilers to
do so. They do not address the problem of program repair.

Testing solutions like ct-fuzz [15] and [7] aim to provide
counterexamples that violate TSCF; i.e., two sensitive inputs
that could cause a program to display different execution
times. However, these testing solutions do not repair programs
in case that they find a counterexample. Similarly to verifi-
cation solutions, we believe that ORIGAMI can be used in
conjunction with these testing solutions.

Enforcement solutions.: These solutions enforce TSCF
by manipulating programs or their executions. Runtime en-
forcement solutions, like SCHMIT [33], dynamically alter the
execution of programs to reduce the leakage of existing side
channels. Static enforcement solutions modify the programs
before execution, and do not monitor their execution.

Static enforcement solutions can be further subdivided into
two categories: synthesis and repair. Synthesis solutions apply
a security-by-design principle, so systems generated by this
tools satisfy TSCF. Among synthesis tools we find FaCT [12]
and CompCert [19]. FaCT is a C-like DSL that always gener-
ates constant-time LLVM bitcode, and CompCert is a certified
compiler that ensures that properties satisfied by the original
program are preserved in the compiled program. The security-
by-design guarantee of FaCT only holds if optimization passes
are disabled, since they might introduce TSC vulnerabilities.
FaCT also rejects programs that access data structures using
secrets. Unlike FaCT, we let the compiler apply optimizations,
and then we use the ORIGAMI rules to ensure the resulting
code satisfies TSCF under the MAP leakage model.

Program repair. Solutions like Raccoon [27], SC-
ELIMINATOR [36] and [31] often modify programs at the
IR level (i.e., in the front-end of the compiler). These static
enforcement solutions assume that further steps in the compi-
lation chain do not undo their modifications to the program.
Other repair solutions, like oo7 [35] work at lower levels, but

they only protect programs against Spectre V1 attacks, and
not against leakage caused directly by the program.

Our tool is mostly similar to Raccoon, SC-ELIMINATOR
and the solution proposed in [31] because we do static
enforcement; however, ORIGAMI offers an advantage over
each of these three solutions. The tool in [31] does not
repair programs with respect to the MAP leakage model
(they repair with respect to the baseline model); the rules
proposed by SC-ELIMINATOR are unsound in the context of
the MAP leakage model; and while Raccoon does offer some
protection against the MAP leakage model, the performance
overhead has a geometric mean of 16x, while ORIGAMI
has a performance overhead of 1.23x. Like Raccoon and
SC-ELIMINATOR, ORIGAMI does not repair recursive calls,
does not offer security guarantees over side-effects (e.g. I/O
system calls), and does not repair programs whose timing side-
channel vulnerability stems from the usage of functions whose
execution time depends on their parameters (i.e., vulnerable in
the OS leakage model).

Spectre Attacks: Spectre V1 attacks [16] rely on the
speculative execution of a gadget of the form x := B[A[s]] to
leak secrets into the cache. Under the MAP leakage model,
x := B[A[s]] reveals A[s] when the program if s < sizeA
then x := B[A[s]] executes, so ifa secret k is speculatively
accessed via A[s′], and then loaded in memory by B[A[s′]],
the attacker can reverse engineer k from A[s′]. ORIGAMI
does not defend against Spectre-style attacks, since its security
guarantees only apply for non-speculative behaviours of the
program. To repair programs that exhibit speculative leaks, we
recommend to use a methodology that finds speculative leaks
(e.g. [11]) or one that cuts dataflows from sensitive sources to
speculative sinks (e.g. BLADE [34]).

VII. CONCLUSION

Although ORIGAMI offers a sound approach to enforc-
ing timing side-channel freedom (TSCF) with respect to the
memory access pattern (MAP) leakage model, there is still a
long way to go until true TSCF is achieved. Most notably,
ORIGAMI does not repair programs that are vulnerable with
respect to the operand sensitive leakage model (OS), but adds
another layer of security by repairing programs that are safe
with respect to the baseline leakage model, but unsafe with
respect to MAP leakage.

While we share the philosophy of [29], and we expect
compilers to take over the task of enforcement of TSCF instead
of the programmer, we believe that as long as hardware does
not offer strong TSCF guarantees which can be depended on
and rightfully used by compilers, any software based solution
for TSCF enforcement, including ORIGAMI, will remain
conditional, and thus not entirely reliable. Nevertheless, while
this type of hardware is available, software-based solutions
can mitigate timing side-channel vulnerabilities.

Our tool and all experimental data are readily avail-
able in an anonymous virtual machine for reproduction
and further research: https://drive.google.com/file/d/1Y3xy
tXBMpRT95qw3zH Nbx8LwLCmBy4/view?usp=sharing.

https://drive.google.com/file/d/1Y3xy_tXBMpRT95qw3zH_Nbx8LwLCmBy4/view?usp=sharing
https://drive.google.com/file/d/1Y3xy_tXBMpRT95qw3zH_Nbx8LwLCmBy4/view?usp=sharing

REFERENCES

[1] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Arthur Blot,
Benjamin Grégoire, Vincent Laporte, Tiago Oliveira, Hugo Pacheco,
Benedikt Schmidt, and Pierre-Yves Strub. Jasmin: High-assurance and
high-speed cryptography. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, CCS ’17, page
1807–1823, New York, NY, USA, 2017. Association for Computing
Machinery.

[2] Jose Bacelar Almeida, Manuel Barbosa, Gilles Barthe, François Dupres-
soir, and Michael Emmi. Verifying constant-time implementations. In
25th USENIX Security Symposium (USENIX Security 16), pages 53–70,
Austin, TX, August 2016. USENIX Association.

[3] Jean-Philippe Aumasson. Cryptocoding, August 2019.
[4] J. Bacelar Almeida, Manuel Barbosa, Jorge S. Pinto, and Bárbara

Vieira. Formal verification of side-channel countermeasures using self-
composition. Sci. Comput. Program., 78(7):796–812, July 2013.

[5] Manuel Barbosa, Gilles Barthe, Karthikeyan Bhargavan, Bruno
Blanchet, Cas Cremers, Kevin Liao, and Bryan Parno. Sok: Computer-
aided cryptography. IACR Cryptol. ePrint Arch., 2019:1393, 2019.

[6] Gilles Barthe, Benjamin Grégoire, and Vincent Laporte. Secure com-
pilation of side-channel countermeasures: The case of cryptographic
“constant-time”. In 2018 IEEE 31st Computer Security Foundations
Symposium (CSF), pages 328–343, 2018.

[7] Tiyash Basu, Kartik Aggarwal, Chundong Wang, and Sudipta Chattopad-
hyay. An exploration of effective fuzzing for side-channel cache leakage.
Software Testing, Verification and Reliability, 30(1):e1718, 2020. e1718
stvr.1718.

[8] Daniel J Bernstein. Cache-timing attacks on AES, 2005.
[9] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Rein-

hardt, Ali Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar
Krishna, Somayeh Sardashti, Rathijit Sen, Korey Sewell, Muhammad
Shoaib, Nilay Vaish, Mark D. Hill, and David A. Wood. The gem5
simulator. SIGARCH Comput. Archit. News, 39(2), August 2011.

[10] Barry Bond, Chris Hawblitzel, Manos Kapritsos, K. Rustan M. Leino,
Jacob R. Lorch, Bryan Parno, Ashay Rane, Srinath Setty, and Laure
Thompson. Vale: Verifying high-performance cryptographic assembly
code. In 26th USENIX Security Symposium (USENIX Security 17), pages
917–934, Vancouver, BC, August 2017. USENIX Association.

[11] Sunjay Cauligi, Craig Disselkoen, Klaus v. Gleissenthall, Dean Tullsen,
Deian Stefan, Tamara Rezk, and Gilles Barthe. Constant-time founda-
tions for the new spectre era. In Proceedings of the 41st ACM SIGPLAN
Conference on Programming Language Design and Implementation,
PLDI 2020, pages 913–926, New York, NY, USA, 2020. Association
for Computing Machinery.

[12] Sunjay Cauligi, Gary Soeller, Brian Johannesmeyer, Fraser Brown,
Riad S. Wahby, John Renner, Benjamin Grégoire, Gilles Barthe, Ranjit
Jhala, and Deian Stefan. Fact: A dsl for timing-sensitive computation.
In Proceedings of the 40th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2019, page 174–189, New
York, NY, USA, 2019. Association for Computing Machinery.

[13] Sudipta Chattopadhyay, Moritz Beck, Ahmed Rezine, and Andreas
Zeller. Quantifying the information leakage in cache attacks via
symbolic execution. ACM Trans. Embed. Comput. Syst., 18(1), January
2019.

[14] Goran Doychev, Dominik Feld, Boris Kopf, Laurent Mauborgne, and
Jan Reineke. Cacheaudit: A tool for the static analysis of cache side
channels. In 22nd USENIX Security Symposium (USENIX Security 13),
pages 431–446, Washington, D.C., August 2013. USENIX Association.

[15] S. He, M. Emmi, and G. Ciocarlie. ct-fuzz: Fuzzing for timing
leaks. In 2020 IEEE 13th International Conference on Software Testing,
Validation and Verification (ICST), pages 466–471, 2020.

[16] Paul Kocher, Jann Horn, Anders Fogh, , Daniel Genkin, Daniel Gruss,
Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas
Prescher, Michael Schwarz, and Yuval Yarom. Spectre attacks: Exploit-
ing speculative execution. In 40th IEEE Symposium on Security and
Privacy (S&P’19), 2019.

[17] Boris Köpf, Laurent Mauborgne, and Martı́n Ochoa. Automatic quan-
tification of cache side-channels. In P. Madhusudan and Sanjit A.
Seshia, editors, Computer Aided Verification, pages 564–580, Berlin,
Heidelberg, 2012. Springer Berlin Heidelberg.

[18] Dexter Kozen and Maria-Christina Patron. Certification of compiler
optimizations using kleene algebra with tests. In Proceedings of the

First International Conference on Computational Logic, CL ’00, pages
568–582, Berlin, Heidelberg, 2000. Springer-Verlag.

[19] Xavier Leroy. Formal certification of a compiler back-end or: Program-
ming a compiler with a proof assistant. In Conference Record of the 33rd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’06, pages 42–54, New York, NY, USA, 2006.
Association for Computing Machinery.

[20] Libtom. libtomcrypt.
[21] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner

Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel
Genkin, Yuval Yarom, and Mike Hamburg. Meltdown: Reading kernel
memory from user space. In 27th USENIX Security Symposium (USENIX
Security 18), pages 973–990, Baltimore, MD, August 2018. USENIX
Association.

[22] Chang Liu, Michael Hicks, and Elaine Shi. Memory trace oblivious
program execution. In 2013 IEEE 26th Computer Security Foundations
Symposium, pages 51–65, 2013.

[23] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee. Last-level cache
side-channel attacks are practical. In 2015 IEEE Symposium on Security
and Privacy, pages 605–622, 2015.

[24] David Molnar, Matt Piotrowski, David Schultz, and David Wagner. The
program counter security model: Automatic detection and removal of
control-flow side channel attacks. Baltimore, MD, July 2005. USENIX
Association.

[25] V. C. Ngo, M. Dehesa-Azuara, M. Fredrikson, and J. Hoffmann. Verify-
ing and synthesizing constant-resource implementations with types. In
2017 IEEE Symposium on Security and Privacy (SP), pages 710–728,
2017.

[26] Jonathan Protzenko, Jean-Karim Zinzindohoué, Aseem Rastogi, Tahina
Ramananandro, Peng Wang, Santiago Zanella-Béguelin, Antoine
Delignat-Lavaud, Cătălin Hriţcu, Karthikeyan Bhargavan, Cédric Four-
net, and Nikhil Swamy. Verified low-level programming embedded in
f*. Proc. ACM Program. Lang., 1(ICFP), August 2017.

[27] Ashay Rane, Calvin Lin, and Mohit Tiwari. Raccoon: Closing digital
side-channels through obfuscated execution. In 24th USENIX Security
Symposium (USENIX Security 15), pages 431–446, Washington, D.C.,
August 2015. USENIX Association.

[28] Bruno Rodrigues, Fernando Magno Quintão Pereira, and Diego F.
Aranha. Sparse representation of implicit flows with applications to side-
channel detection. In Proceedings of the 25th International Conference
on Compiler Construction, CC 2016, pages 110–120, New York, NY,
USA, 2016. Association for Computing Machinery.

[29] Laurent Simon, David Chisnall, and Ross Anderson. What you get is
what you c: Controlling side effects in mainstream c compilers. In 2018
IEEE European Symposium on Security and Privacy (EuroS P), pages
1–15, 2018.

[30] Steffen Smolka, Nate Foster, Justin Hsu, Tobias Kappé, Dexter Kozen,
and Alexandra Silva. Guarded kleene algebra with tests: Verification
of uninterpreted programs in nearly linear time. Proc. ACM Program.
Lang., 4(POPL), December 2019.

[31] Luigi Soares and Fernando Magno Quintãn Pereira. Memory-safe elim-
ination of side channels. In 2021 IEEE/ACM International Symposium
on Code Generation and Optimization (CGO), pages 200–210, 2021.

[32] The GNOME Project. gdk3 keyboard handling.
[33] Saeid Tizpaz-Niari, Pavol Černý, and Ashutosh Trivedi. Quantitative

mitigation of timing side channels. In Isil Dillig and Serdar Tasiran,
editors, Computer Aided Verification, pages 140–160, Cham, 2019.
Springer International Publishing.

[34] Marco Vassena, Craig Disselkoen, Klaus von Gleissenthall, Sunjay
Cauligi, Rami Gökhan Kıcı, Ranjit Jhala, Dean Tullsen, and Deian
Stefan. Automatically eliminating speculative leaks from cryptographic
code with blade. Proc. ACM Program. Lang., 5(POPL), January 2021.

[35] G. Wang, S. Chattopadhyay, I. Gotovchits, T. Mitra, and A. Roychoud-
hury. oo7: Low-overhead defense against spectre attacks via program
analysis. IEEE Transactions on Software Engineering, pages 1–1, 2019.

[36] Meng Wu, Shengjian Guo, Patrick Schaumont, and Chao Wang. Elimi-
nating timing side-channel leaks using program repair. In Proceedings of
the 27th ACM SIGSOFT International Symposium on Software Testing
and Analysis, ISSTA 2018, pages 15–26, New York, NY, USA, 2018.
Association for Computing Machinery.

[37] Yuval Yarom and Katrina Falkner. Flush+reload: A high resolution, low
noise, l3 cache side-channel attack. In 23rd USENIX Security Symposium
(USENIX Security 14), pages 719–732, San Diego, CA, August 2014.
USENIX Association.

	Introduction
	Preliminaries
	Timing Side Channel Freedom Enforcement
	Leakage Models
	TSCF Under MAP Leakage - Informally
	Guarded Kleene Algebra with Tests (GKAT)

	Formalising TSCF with MAP
	Repairing TSCF under MAP with ORIGAMI
	A Concrete GKAT
	ORIGAMI Rules
	Repair Rules for the Baseline Model
	Limitations of ORIGAMI

	Evaluation
	Implementation
	Experimental Setup
	Taint Analysis
	Proof of Concept (POC)
	ORIGAMI on AES and GDK

	Related Work
	Conclusion
	References

