
1

A novel approach to Real-time contract based reasoning for Hybrid
Systems

1st Surinder Sood
Dept. of Electrical and Computer eng.

University of Auckland
Auckland, NewZealand

surinder.sood@gmail.com

2nd Avinash Malik
Dept. of Electrical and Computer eng.

University of Auckland
Auckland, Newzealand

avinash.malik@auckland.ac.nz

3rd Partha Roop
Dept. of Electrical and Computer eng.

University of Auckland
Auckland, Newzealand
p.roop@auckland.ac.nz

Worst Case Execution Time (WCET) analysis of large and complex hybrid systems can be time consuming. Contract based
design allows for compositional reasoning of complex systems. Contracts justify the behavior of a system by way of assumptions
(which are to be satisfied by the system environment) and guarantees, which are to be met by the system. Contracts also play a
major role in compositional reasoning, refinement and re-usability of the system components. In this paper, we present a formal
framework to enforce real-time contracts using Hoare triples, for synchronous system design and verification. In that regard, we
propose real-time Hoare rules which are based on the WCET of the system and its components. We verify the real-time behavior
of the system by applying these rules. These rules not only justify the system behavior and the behavior of its components but their
timing as well. We also show that these Hoare rules are sound. Then we show that the synchronous composition of component level
Hoare rules based contracts justify a system level contract. This real-time contract composition and reasoning technique which is
based on real-time Hoare logic rules is the first ever attempt in synchronous system design and verification.

Index Terms—Cyber-physical Systems (CPS), Hoare Logic, Worst Case Execution Time (WCET), Timed properties

I. INTRODUCTION

Real time functional correctness of safety critical hybrid
systems can only be ensured if they are met in strict time.
With technological advancements, the scope and complexity
of such systems is increasing at a very fast pace. This calls
for effective and rigorous methods to find defects in the early
design phase so as to guarantee their correctness, safety and
strict in time behavior. Simulink® is the de-facto standard for
model based design and validation of such systems. However,
it does not provide an adequate platform for compositional
real-time verification of such safety-critical systems, although
few attempts are made in this field in the recent past [1],
[2]. Compositional verification becomes very important as the
designs scale up in complexity and composition.

Contract-based design, a concept first coined for defining
software specification [3] is now applied to design of embed-
ded systems [4]–[9]. A contract is usually specified by a pair
of assumptions, or the properties, which the environment of a
component must satisfy, and guarantees, or a set of properties
which must be satisfied by the component. Contract based
design comes with many advantages: 1⃝ contracts help in com-
positional reasoning, 2⃝ contracts help in re-use of components
to design different systems, 3⃝ contract refinement [10] helps
guarantee the safety behavior of a system. This means that
if the refined contracts are satisfied then a system contract
will also be satisfied, thus guaranteeing system correctness
and safety. Static reasoning is the most popular technique to
do contract verification, which is a very important step in the
design of embedded systems. There are many works focusing
on assume-guarantee based static reasoning of contracts [10]–
[14]. But none of the works focus on real time contract based
reasoning for hybrid systems and the said techniques (which

are mostly Linear Temporal Logic (LTL) based) are not suited
for effective reasoning of a program stack trace.

In this paper we define the notion of real time contracts
which use Hoare logic rules [15]. Main contributions of our
work are briefly described as follows:

1⃝ We define real-time contract composition and reasoning
technique which is based on Hoare Logic rules [15] and is
well-equipped to reason the program states. In this regard,
we first define a new language syntax which is a subset of
Pret-C [16]. A given Simulink® model is translated into this
language. We call this new language as Synch-C, 2⃝ then we
define real-time Hoare logic rules which are based on WCET
of the program, 3⃝ we derive Satisfiability Modulo Theory
(SMT) encodings of the program written in this language using
WCET based Hoare logic rules and micro architectural level
instruction timings. We feed these SMT encodings to Z3®SMT
solver and guarantee that they satisfy the contracts defined for
every program component. This is how we prove that our rules
are sound and also guarantee program correctness, 4⃝ finally
we show that a synchronous composition of these real time
component level contracts guarantee a system level contract.
The overall methodology is shown in Figure 1 and is described
as follows:

• Step-1: At the very first step, we create a Simulink®

model of the system. Every component of the model is
modeled as per it’s contract definition. We use Hoare
logic contracts refinements for every component. For
example, in Figure 1, Comp − 1 is an implementation
based on it’s contract refinement Ch1. We elaborate this
in Section III.

• Step-2: We define a new programming language whose
syntax is a subset of a Pret-C [16] and call it Synch-
C. The Simulink® model is then translated into this
language program.978-1-5386-6195-6/18/$31.00 ©2018 IEEE

2

• Step-3 In this step we do the following:
- The micro-architectural analysis of the program

obtained in previous step is done. This involves trans-
lation of the program into PT-Arm [17] assembly for
assembler instruction timing analysis. The WCET com-
putation of the program is based on the number of clock
cycles taken by each assembly instruction. It is assumed
that the control flow bound analysis is already done
using the techniques specified in [18].

- Then we obtain the SMT encoding of the program
by applying WCET based real-time Hoare rules defined
in this paper. The SMT encoding of a component is
based on the component level Hoare logic contracts
defined for it. For example, property P1 is based on
the contract definition Ch1 for component, Comp− 1.
These component level contracts are the refinements of
a system level contract C.

• Step-4: These SMT encodings are input to a SMT
solver so that all the component level properties are
satisfied. Then a synchronous parallel composition P
of all component level properties automatically satisfy a
system level property. This we describe in Section III.
Consequently, the correctness of a system level contract
Ch is guaranteed.

The rest of the paper is structured as follows: In Section
II, we describe the running example and envision the contract
based framework that requires methods proposed in the paper.
In Section III we give background of Hoare Logic and Hoare
Logic contracts. We then describe how a contract compo-
sitional framework is used to justify system level contracts
in Section IV. In Section V we introduce a new imperative
language called Synch-C and show how a Simulink®model
is translated in to Synch-C. Then we describe WCET based
derivation rules using Hoare Logic in Section VI. These rules
are then used to formulate SMT encoding which we describe
in Section VI-B. Later on we present four benchmarks on
which we tested our methodology, this is described in Section
VII. Finally, in Section VIII we present the related work and
we conclude in Section IX.

II. MOTIVATING EXAMPLE AND PROBLEM DESCRIPTION

We use a train-gate control system adapted from [19] as the
running example of the paper. Figure 2 shows a circular track
on which a train moves and a gate crossing for the incoming
traffic. The total train trajectory is 25m, and is divided into two
regions, one is Un-safe region which is of length 15m while
other is the safe region of length 10m. Whenever train enters
the safe region gates are opened, else, the gates are closed.
The Simulink® model of this train gate system is shown in
Figure 3c. Train’s movement is depicted by y_out which is
input to the controller, while train’s angular motion is tracked
by signals xc_out and yc_out. The train’s linear motion
follows the Ordinary Differential Equation (ODE) described
in Equation 1, (here vf is velocity of the train). The gate
movement is based on the ODE described in Equation 2 (here
x is the position of gate).

f(y)
def
=

[
ẏ
]
=

[
vf
]

(1)

System Level Contract -C
[Step 1-Simulink Model]

Refinement Refinement Refinement

SMT-2+P2 SMT-n+PnSMT-1+P1

SynchC-C-2 SynchC-C-nSynchC-C-1

SMT Solver

SAT

Overall
Properties

[Comp-1] [Comp-2] [Comp-n]
Step 2 :

Translation

Step 3 : SMT
Encoding

Step 4 : Static
verification

Fig. (1) Proposed Methodology: Here Ch is the system
level contract for the system and component level contracts
Ch1,Ch2,...,Chn are the refinements of Ch.

Fig. (2) Train and Gate Setup. Total train trajectory is 25 m.

g(x)
def
=

[
ẋ
]
=

[
(1−x)

2
5-x2

]
(2)

After analyzing the train’s position, the controller takes de-
cision to control the gate movement. This is represented as
up and down signals going to the gate model. In order to
guarantee correctness of the model’s functional and timing
behavior, we need to make sure that the controller decisions
for gate position are correct w.r.t train movement. To guarantee
this, contracts have been defined and they should be satisfied
for model correctness. The current prevalent technique for
contract verification uses LTL properties [10], [20]–[23], [22]
which has it’s own issues. For example, let us consider a
system level contract: Whenever gate is down and train is
moving then gate eventually opens. This system level contract
is refined by two contracts: 1⃝ Train Contract: If train position
is between 0 and 15m then eventually it’s position will be
between 15 and 25m. 2⃝Gate contract: If gate is initially closed
then it eventually opens. The system level contract is justified
if it’s corresponding component level contract refinements are
correct and justified, such that their synchronous composition
satisfies the system level contract [10]. But this framework of

3

contract specification and refinement suffers from following
issues:

1) The system level contract and it’s contract refinements
are not real-time, as they miss to define the strict
timing system requirements. For example, Train contract
refinement says that the train position will be any value
between 15 and 25m within sometime. This means that
the actual train position is not known with this contract
specification. Similarly, the system contract says that the
gate will open in some time, but what is the time when
it will actually open is not known.

2) Any LTL property cannot reason about the first and last
state of any program code (on which contract verification
and reasoning heavily depends), even if the property
is satisfied on the stack trace of the program. Hence,
accurate timing verification of the contracts specified as
temporal properties cannot be performed.

3) Any LTL property does not cover various invariant con-
ditions at the system and component level. For example,
the current system level contract has invariant condition:
the train position on the circular track is always greater
than zero and

√
xc_out2 + yc_out2 = R, where R

is the radius of the circular trajectory. These invariant
conditions apply to all the contracts.

4) Even if we have the correct contract refinements of
a system contract and as per [10] the composition of
such sub-contracts justify the system level contract.
But such type of compositional contract based prop-
erty verification of Simulink®models is not possible as
Simulink®lacks clear semantics and often involve third-
party tools which are poorly specified [24].

We remedy these issues by proposing real-time Hoare Logic
[15] based contracts definition and composition framework
(which is described in subsequent sections) and redefining
the contracts with timing intervals. Hence, we have system
contract as: Whenever gate is down and train is moving then
gate eventually opens within 110000 clock cycles, Gate level
contract as: Whenever gate is down then gate opens within
110000 clock cycles, while the train contract is defined as: If
train position is between 0 and 15m then within 110000 clock
cycles it’s position will be 23m.

III. HOARE LOGIC

In this section we give a brief background of Hoare logic.
Then we describe Hoare Logic contracts and their soundness.

A. Background of Hoare Logic

Hoare logic [15] is a formal mechanism used for reasoning
on the program correctness. The mechanism typically consists
of a triple, (popularly know as Hoare Triples), which consists
of {P}C{Q}. Here P is the pre-condition, which must hold
before any command C is executed. Once the command is
executed the post-condition Q must be guaranteed.

B. Hoare Logic contracts

We refer to the pair Ch = (P,Q) as a hoare logic contract,
where P is the pre-condition and Q is the post-condition. We

say that a particular implementation, say S satisfies the con-
tract Ch, denoted as S |= Ch, if and only if S |= {P}S{Q}.
Furthermore this means [S]⊆[Ch], where [S]is contract-
relative denotation of program S and [Ch]is denotation of
contract Ch [25].

Definition 1: Contract Denotation: The denotation of a
contract Ch is defined as follows:

[Ch]
def
=

{
(s, s′)|∀I.(s |=I P =⇒ s′ |=I Q)

}
. This means

that over a given interpretation I of the program S, the Hoare
triple is valid if for every state s such that s |=I P , if execution
of S from state s terminates in a state s′, then s′ |=I Q.
Such contract semantics express an assume-guarantee style
treatment of programs [25].

Definition 2: Soundness: A hoare logic contract Ch is
said to be sound if it’s post condition is guaranteed when a
program is executed based on the satisfaction of pre-condition.
Mathematically, Ch is sound iff S |= Ch.
As an example, we describe train contract from our running
example as Hoare Logic contract. The train contract says: If
train position is between 0 and 15m then within 110000 clock
cycles it’s position will be 23m. For this contract the pre-
condition is: 0 ≤ y_out ≤ 15, here y_out is the train position.
The post condition is: cycles ≤ 110000 ∧ y_out == 23m.
Between these pre and post conditions the train ODE described
in Equation 1 evolves. Our train model implementation satis-
fies this contract, hence we say that S |= Ch and based on
Definition 2 the contract is sound.

IV. CONTRACT BASED COMPOSITIONAL REASONING

In this section we describe refinement of a system level
contract and then show that the composition of refinements
justifies a system level contract. We use Hoare logic contracts
as described in Section III-B to define the component level
contract refinements. We briefly describe contract composi-
tion techniques (which are based on system decomposition
and contract refinement) described in [10]. First we describe
decomposition of a system S among it’s components, which is
established over subset of connections of a system interface.
This is formally described in Definition 3. Later on a contract
refinement is defined over these components which is formally
described in Definition 4. We show that the conjunction of
contract refinements justifies a system level contract. This is
proven in Theorem 1.

Definition 3: Decomposition: Let S be a system. Then the
architectural decomposition of S is a pair σ =< Sub, γ >,
such that for every component of S: 1⃝ Sub(S) is the set of
subcomponents of S and Sub(S) ̸= ϕ, if S is a composite
component. 2⃝ γ(S) represents the connections among sub-
components.

Definition 4: Refinement: Let ψ(S) denote the set of con-
tracts of a system S and if S denotes a set of components of
S, then ψ(S) =

⋃
S∈S ψ(S). Given a decomposition σ =<

Sub, γ > and a system S, a set of contracts Ch ⊆
⋃
S′∈Sub(S)

is a refinement of Ch, written as Ch ≤ref Ch, if and only if
following are true:

1) If correct implementations of sub-contracts satisfy the
system contract Ch and

4

(a) Train model’s Stateflow Chart. (b) Controller Simulink® model.
(c) Train Gate Controller model in
Simulink®

Fig. (3) Train Gate controller model is shown in Figure 3c, Stateflow chart for controller and plant is shown in Figures 3b
and 3a
.

2) For each Hoare sub-contract CU,h of every sub-
component U , the correct implementation of other Hoare
sub-contracts and a correct environment of Ch form a
correct environment of U . This is described mathemat-
ically in Equation 4.

Remark 1: If there is only one sub-component having
contract C ′

h, then C ′
h refines Ch, written as C ′

h ≤ref Ch,
if C

′

h,impl ⊆ Ch,impl and C
′

env,h ⊇ Cenv,h.
Theorem 1: For a component S, a Hoare contract Ch of S,

a decomposition σ = ⟨Sub, γ⟩ and Ch ⊆ ψ(Sub). Ch ≤ref Ch
iff following conditions hold:

1) Conjunction of hoare sub-contracts combined over a
given set of connections γ with projection on the vari-
ables VS of S (with VSub ∈ VS) should satisfy the sys-
tem level contract Ch. This is described mathematically
in Equation 3.

∃VSub(
∧

C′
h∈ψ(S′)∩Ch,S

′∈Sub

C ′
h ∧ γ) |= (Ch) (3)

2) Conjunction of pre-conditions (P) of S with contracts
of other components over a given set of component
interface connections γ which are projected on variables
of the component U should satisfy the pre-condition of
U .

∃, VSub\U(PS∧
∀U∈Sub,∀<CU>∈ψ(U)∩Ch∧
C′

h∈ψ(S′)∩Ch,S
′∈Sub\{U}

C ′
h∧γ) |= (PU)

(4)
Proof 1: We refer to [10] for the proof of this theorem.
Once the component level contract refinements are guar-

anteed, then as per Theorem 1 the synchronous composition
of these properties, guarantee the system level contract. We
specify the system and component level contracts for our
running example to describe this as follows: CS = If train
is moving and gate is closed then it will open within 110000
clock cycles, is the system level contract, CS,P : y_out ≥
0 ∧ Down == 1 ∧ Up == 0 is the system contract’s
pre-condition and CS,Q : cycles ≤ 110000 ∧ y_out >
0 ∧Down == 0 ∧ Up == 1 is the post condition. Similarly,
CT =< CT,P , CT,Q > where CT is train contract with
CT,P , CT,Q with pre and post condition respectively where,
CT= If train position is between 0 and 15m then within 110000
clock cycles it’s position will be 23m., CT,P : 0 ≤ y_out ≤ 15
and CT,Q: cycles ≤ 110000 ∧ y_out == 23. Here, y_out
is train’s position. Finally, gate contract is CG: If gate is

initially closed then it opens within 110000 clock cycles. with
CG,P : Down == 1 ∧ Up == 0 as pre condition and
CG,Q : cycles ≤ 110000 ∧Down == 0 ∧ Up == 1 as post
condition. It should be noted that the timing for all the Hoare
logic contracts is computed based on the micro architectural
assembly language timing analysis described in Section V.

It is obvious that CT,Q ⊆ CS,Q (this is because if train
covers 23m, then gate will definitely open in 110000 cycles)
and CS,P ∧ CG,P |= CT,P (This means that if gate is closed
and train is moving which means train position is ≥ 0).
Similarly, CG,Q ⊆ CS,Q and CS,P ∧ CT,P |= CG,P . This
means that, CT ∧ CG |= CS . Hence, the component level
contracts refine the system level contract and the conjunction
of the refinements of component level contracts as per Equa-
tion 3 of the Theorem 1 guarantees the system level contract.
Obviously, the contracts are sound if they justify soundness
criteria as per Definition 1 and 2. The cycle time of every
component guarantees is derived from its SMT encodings,
these are generated by applying WCET based real-time Hoare
rules on Synch-C programs and is described in Section VI.

V. TRANSLATING SIMULINK®MODEL INTO THE
IMPERATIVE LANGUAGE

To perform micro-architectural instruction timing analysis,
we translate the Simulink® model into an imperative language
called Synch-C, which is a subset of Pret-C [16]. We first
describe the syntax of our imperative language and then we
describe how the Simulink® model constructs are mapped to
this language syntax. Finally, we use the Synhc-C program to
create SMT encodings for static reasoning.

A. Syntax of the imperative Language

For our imperative language Synch-C, we consider subset of
the constructs defined in Pret-C [16] language. We chose this
language because it supports concurrency and is time analyz-
able. It considers all the standard arithmetic and Boolean ex-
pressions besides also considering the assignments, conditional
statements and iterative control structures i.e. while loops. The
syntax of our language is defined inductively in Equation 5.
Here, e is a standard arithmetic expression, b is a standard
boolean expression and C is the standard command being
executed. Also, skip indicates a NO operation and C1 ∥ C2

means that two commands are executed synchronously on

5

different processors. Finally, F describes a function call having
arguments X

′

1 . . . X
′

m. The function calls made are call by
value.
C

def
= skip|x = e|C1;C2|if(b){C1}else{C2}
|while(b){Cw}|C1 ∥ C2|⟨Y

′

1 . . . Y
′

n⟩ = F ⟨X
′

1 . . . X
′

m⟩
(5)

B. Semantics of the Imperative language

In this section we define the semantics of Synch-C whose
syntax is defined in the previous Section. The main aim of
defining the semantics of Synch-C is to determine how a
Synch-C program (p) executes. We explain this by describing
a program state before and after the application of the syntax
command. For this we assume s as the program state before
applying command C and s’ as the program state after the
application of the command.

1) skip command: Here the initial and final state of the
program remains same, which is s for program p.

2) assignment command: If the command is an assign-
ment x ::= e and the initial state is s then the final state
is also s, where the value of x is replaced by evaluation
of expression e.

3) sequence command: If the assignment is a sequential
composition, then we have a combined sub-commands
C1;C2, such that if starting program state before execu-
tion of C1 is s1 then after C1 finishes execution, then
the program state changes to s2, which is the initial state
for sub-command C2. When C2 finishes execution the
program state terminates in to s3.

4) conditional command: This command comprises of if-
then-else kind of rule. Here the current program state
is s, if the boolean evaluation of the If-then part is
true, then the sub-command C1 executes and program
terminates in the state s’. The else part does the same
for the sub-command C2.

5) while loop: Here if the while loop condition evaluates
to false, the whole loop is skipped. However, if the
condition evaluates to true in the program state s1, and
the body (command Cw basically) of the loop starts in
state s2, then the program terminates in state s3.

6) function call: In this case a function call is made by
the program when it is in state s1. The function is called
by value. Upon completion of the function call, the value
returned by the function is copied to the program stack
and it’s state is changed to s2.

7) Synch parallel command: In this case two programs
say p1 and p2 are allocated simultaneously to two
processors, which are called by a main program which
is in state s. They run independent of each other and
update their respective program states and stacks. On
termination the resulting values of these programs are
updated in the main program stack. Eventually, the main
program terminates in state s’.

Code Listing (1) Code Snippet for Train model
train(tp,delta)
/*store train position tp into local stack tstack*/
tstack[ts_y] = tp
if(tstack[ts_y] <= 5) /*T1*/

tstack[ts_y]=tstack[ts_y]+tstack[ts_y]*delta/*c1*/
else if(tstack[ts_y] >5 and tstack[ts_y] < 15)/*T2*/
tstack[ts_y]=tstack[ts_y]+tstack[ts_y]*delta/*c2*/

else if(tstack[ts_y]>=15 and tstack[ts_y]<25)/*T3*/
tstack[ts_y]=tstack[ts_y]+tstack[ts_y]*delta/*c3*/

else
tstack[ts_y] = 0/*c4*/

/*local stack values are passed to caller*/
return tstack[ts_y]

C. Translating Simulink® model to imperative language

In order to get the Synch-C program from the Simulink®

model, we map every Simulink® block to the language
syntax. This is briefly described below: 1⃝ Every state in
the Stateflow® corresponds to a specific conditional block
of if-then-else, 2⃝ the evolution of ODEs in a given
state is implemented as a while loop, 3⃝ assignment syntax
maps every assignment in Stateflow®, 4⃝ any function call
from any Stateflow® block is handled by the corresponding
Synch-C function syntax, 5⃝ parallel states are mapped as
parallel functions executed simultaneously, while, 6⃝ the skip
handles any NO operation. The train Stateflow®chart is shown
in Figure 3a. The corresponding Synch-C code obtained is
shown in Listing 1, while the complete code for running
example is shown in [26]. As can be seen from the listing
every state in Simulink®maps to a specific conditional block in
Synch-C. The initial values are assigned before the conditional
blocks are executed. Every execution of a conditional block
updates the stack state of the program, here we define the stack
as tstack which is updated on every assignment statement.
The entire conditional block is wrapped by a while loop to
execute it a number of times. The ODEs evolve on every
iteration of the while loop until the loop condition holds. The
ODE evolution step selection is based on robustness criteria
[27] and the iteration is done number of times based on timing
analysis described in Section VI.

VI. WCET BASED REAL-TIME HOARE LOGIC RULES

In this section we describe real-time Hoare rules based
on Hoare logic described in Section III. These rules are
then applied on our running example to reason the timing
and functional correctness of the program, consequently, we
guarantee that these rules are sound.

A. WCET syntactic derivation rules

We extend the Hoare Logic rules specified in [15] as real
time Hoare logic rules, and then later on we prove that these
rules are sound. All the rules are specified in Figure 4 and are
explained briefly below.

• The skip Rule: This is an empty statement or NOP rule.
The state of the program is maintained the same, before
and after the execution of the rule. Here Γ (ref Figure
4) is the global stack to save different global variables,
P is the pre-condition while, W is the time before the
execution of the skip statement. The rule states that
the worst time taken to execute the skip is zero time
units.

• The assignment Rule: The assignment rule states that
the worst case execution time taken by an assignment

6

Skip Rule

Loop Rule

Consequence Rule

Function Rule

Rule for true synchronous parallel Functions

Sequential Rule

Rule for conditional branches

Assignment Rule

Fig. (4) Hoare Logic rules with WCET.

in a program is ω time units, where W is the time before
the assignment statement execution and updation of the
contents on the stack Γ.

• Rule for Conditional Branches:The conditional rule
states the following: 1⃝The post condition after the
execution of then part is also the post condition after
the execution of else part. 2⃝ The worst case execution
time taken by the if-then-else is the maximum of
the time taken by the if-then and else blocks plus
the time taken in evaluating the if condition which is
represented by tbeval. Here B (ref Figure 4)is the
condition which can be either true or false, P is the
pre-condition, Q is the post-condition, W is the time
before execution of the condition, while X1 and X2 are
the times of If and Else blocks.

• The Sequential Rule: The sequential rule states that the
WCET taken in executing two sequentially executed
programs C1 and C2, where C1 executes before C2
is the sum of WCET taken in executing C1 and C2.
The rule is formally stated in Figure 4, where Q is the
mid-condition, P is the pre-condition and R is the post
condition.

• The Loop rule: The Loop rule applies to control loops
like while. The total time taken by the loop to execute
once is X’ and the number of iterations it takes |D|.
Hence the WCET of the loop will be |D|× X ’ plus one
extra iteration when the while condition is false, which
is indicated by B × (|D| + 1). Hence, the WCET = X +
|D|× X ’ + B × (|D| + 1), where X is the time when the
loop has started. P specified in the rule is loop invariant
which should hold outside of the loop as well.

• Consequence Rule: The WCET for this rule is actually
the time spent in proving the post condition Q1, if the
starting time was X when the pre-condition P1 was true.

• Function Rule: This rule is applied when a function call
is made from within a function. Here (ref Figure 4) T F is
the time to do the body of the function. RF is the proof
that the time T F is actually equal to the function body’s
execution time. There is also a time to copy the contents
from caller’s function stack to the callee’s function
stack and is represented as (X1,. . .), and the time
to copy results back to the caller’s stack is represented

as: (Y 1,. . .). These are shown in the antecedent as
ω1 and ω2. Where ω1 = (teval − copy − arg) and
ω2 = (teval − copy − return). The WCET is given
by W , where W =(TF + X + m × ω1 + n × ω2). It
should be noted that the precondition P F on function F
is always on the input pins while the post condition QF
is always on the output of the function.

• Rule for True Synchronous parallel function execution:
True parallel means that two or more functions are
being executed on different machines. The rule states
the parallelism of two component programs C1 and C2.
Each component maintains it’s own stack (which is Γ1

for C1 and Γ2 for C2) and is updated during the course
of execution.The time to copy arguments to it’s own
stack and also on to the caller’s stack (Γ) are included
in X1 and X2 respectively. P 1 and Q1 are the pre and
post conditions of component C1, while P 2 and Q2
are the conditions for component C2 respectively. As
described in the rule, total time taken by the components
to finish is the sum of maximum of the X1 and X2 of the
components plus fork and join time these components
take. The max() operator follows the time taken by
the last component to finish, once this is done then the
caller’s stack is updated. If there is a shared variable
between the two component programs, then 1⃝ at the
time, whenever both of the components are called, they
read value of the variable from the caller’s stack Γ and,
2⃝ the final value of the shared variable is written to the

caller’s stack by the component program which finishes
last.

B. Generating SMT encoding by applying Real-time Hoare
rules in contract based design

We apply rules specified in Section VI-A to generate
SMT encodings which are used for static reasoning of the
corresponding contract based designs.

The overall procedure to generate SMT encodings is de-
scribed as follows:

1) We use PT-Arm [17] compiler to get the assembler
instruction timings of the Synch-C program.

2) We apply WCET rules to arrive at the SMT encodings,
which constitute pre and post conditions of Hoare logic
along with WCET information of every program block.

7

3) All encodings (from previous step) are written in Python
and are proved by Z3®solver. If all properties are proven
then this means that our program is correct and it also
guarantees that our Hoare logic based WCET rules are
sound. We chose a specific lock step value on which
our code executes. It is worth mentioning that all the
ODEs also evolve on this lockstep. Reason for choosing
a specific lock step is to guarantee robustness of our
properties and hence we meet the robustness criteria,
which is described in [27], [28].

4) Once all the properties are proven we claim that the
Simulink/Stateflow®is guaranteed to behave as per func-
tionality within strict timing range.

We explain the above procedure using our running example.
The Synch-C code has a top function which calls the train()
and circle() functions running in parallel. This function
also calls the other functions as well, but we only show
train() function (Listing 1) because of space constraints.
The train() and circle() functions are called using
Synch-C syntax as shown below:
Γ[Tp],Γ[xc_out],Γ[yc_out],Γ[theta] = train(tp, delta) ∥
circle(xc_out, yc_out, delta). Here Γ is a global stack which
store the values returned by train() (returns the current train
position) and circle() (returns the angular position theta along
with xc_out, yc_out co-ordinates) respectively. We apply the
derivation rules in a bottom up manner on the program to
arrive at the SMT encodings. We assume that the top function
contains this parallel function execution only, for the sake
of simplicity. First we apply function rule to train()
function to arrive at the interim pre condition.

ω21 train
def
=< Ptrain, Qtrain, Ttrain > ω22

[P (Γ[Tp]/I1,Γ[delta]/I2),W − (X)]train = expr
(6)

Here, expr=train < Γ[Tp], delta >[Q(xc_out/O1),
Q(yc_out/O2), Q(theta/O3),W], and W − X is the time
before the function execution, then after the function execution
it is W . Also, ω21 and ω22 is the time to copy the contents from
caller to callee stack and vice-versa. Ttrain is the time taken by
the body of the function to execute, and we take ω23 as Ttrain.
All these timings are obtained by translating the Synch-C
program into PT-Arm [17] assembly for assembler instruction
timing analysis. Hence the overall time is ωt = ω21+ω22+ω23.
Similarly, for circle(), we take ωc = ω31 + ω32 + ω33. The
overall SMT encoding is computed by applying the rule for
True synchronous parallel functions and is shown
below:

ωt tstack ⊢ train(angle, delta) ∥
th ⊢ circle(xc_out, yc_out, theta) ωc

Γ ⊢ [P1 ∧ P2 ∧W − τ]C1 ∥ C2[Q1 ∧Q2 ∧W]
(7)

In Equation 7, τ = (max(ωt, ωc)+Fork_time+join_time),
C1, C2 are the train and gate functions respectively. Also,
tstack and th are the train and circle stacks, which are
updated whenever train and circle are executed. P1, P2 are the
preconditions, while Q1, Q2 are the post conditions.

Now we derive SMT encodings for train function whose
Synch-C code is given in Listing 1. It consists of If-then
Else statements which describe the States of Simulink®train
model. We apply the derivation rules in a bottom up manner

on the program to arrive at the SMT encodings. We always
start with the assertion [W] as the assertion Q of the last
construct(the last construct in this case is the final Else
block). Now we’ll apply derivation rules to obtain [P]. We
apply If-else rule on the last If-Else block of the
program. The last Else block consists of single assignment
statement, so we apply Assignment Rule to get [P].
Hence we have:

= ω4

[W − (ω4)]tstack[ts_y] = 0[W]
The assertion [W − ω4] states that,if the WCET after the
execution of statement tstack[ts_y]=0 is W then before
the statement execution,WCET must be W − ω4, where ω4

is the clock cycles required to execute the assignment and
updating it’s value on the local stack. The value ω4 is obtained
from the micro-architectural timing analysis of the PTArm
processor [17]. Similarly, we apply assignment rule to
clause c3 as follows:

= ω3

[W − (ω3)]c3[W]
Here clause c3 = tstack[ts_y] = tstack[ts_y] +
tstack[ts_y] × delta. Applying conditional rule we
get:

[(P ∧B3 ∧ ¬B4 ∧ ω3)⊕ (P ∧ ¬B3 ∧B4 ∧ ω4)]
def
=

[(X −max(ω3, ω4) ∧ P ∧B3 ∧ ¬B4)⊕
((X −max(ω3, ω4) ∧ P ∧ ¬B3 ∧B4)]

(8)

In Equation 8 ω3,ω4 are the WCET for clauses c3 and c4
respectively, while B1, B2 are the conditions of If-else.
Likewise we apply assignment rule to clauses c2 and
c1 as follows:

= ω2

[W − (ω2)]c2[W]
= ω1

[W − (ω1)]c1[W]
The maximum WCET is taken as L = max(ω1, ω2, ω3, ω4)
and is used to arrive at the overall pre-condition.
Every component updates local variables on it’s local stack
and any value which is to be passed to the caller is updated in
the caller’s stack. It should be noted that all the components
execute on a common lockstep.

These functions along with the Gate model are called in the
top function and they are iteratively executed until one train
circle is complete. The Real-time Hoare rules defined above
are sound if the SMT encodings derived in this manner using
these rules satisfy the system contracts such that they meet
the soundness criteria as per Definition 2. This is guaranteed
when all the pre and post conditions are satisfied for a given
program by SMT solver. Since it is difficult to theoretically
prove all the rules, given the system complexity, that is why,
we choose Z3®SMT solver for dynamically proving all these
properties. Once all the properties are proven, we compare
the traces of Simulink®with the SMT solver traces. If we
have same traces over a given lockstep value, this means that,
these properties should pass in Simulink®model as well, and
it guarantees that both Synch-C and Simulink®model behave
in a similar fashion.

8

TABLE (I) Z3 modeling for Benchmarks
S.No. Benchmark Lockstep (sec) WCET

1 Train Gate Controller 0.125 118144 cycles
2 Switch Tank Controller 0.02 33078 cycles
3 Nuclear Temperature Controller 0.01 43000 cycles
4 Steering Wheel Controller 0.001 1844430 cycles

(a) Train position evolution. (b) Evolution of water level in first
tank.

(c) Evolution of nuclear reactor
temperature.

(d) Evolution of cos(x).

Fig. (5) Figures showing correlation of evolution (in Z3 and
Simulink®) of: Train position in Figure 5a, water level in
Figure 5b, temperature in Figure 5c and cosine of angular
velocity in Figure 5d.

VII. BENCHMARKS TESTED

We implemented our methodology on four benchmarks
which are presented below. The WCET and lockstep value for
the properties proven in Z3-SMT®model of these benchmarks
is presented in Table I. In all the benchmarks described,
pre means Pre condition, Inv meansInvariant and
post means post condition.

A. Train Gate Controller

This is our running example. The Simulink®model is shown
in Figure 3c. The train movement is controlled by the ODE
specified in Equation 1. The gate motion is follows the ODE
described in Equation 2.

TABLE (II) Hoare Logic based Train Gate Controller timing
Properties.

S.No. Property Conditions
CS1 Train completes one circle in

118144 cycles
Pre: y_out == 0 ∧up == 1 ∧
down == 0. Inv: y_out ≥ 0.
Post:y_out == 25∧ up == 1∧
down == 0∧cycles ≤ 118144.

CS2 Whenever (Down == 1) and
train is moving then gate even-
tually opens (up == 1) in
110000 clock cycles

Pre: y_out == 0 ∧ Up ==
0 ∧ Down == 1. Inv: y_out ≥
0. Post:y_out ≥15 ∧y_out <25
∧Up == 1 ∧ Down == 0 ∧
cycles ≤ 110000.

TABLE (III) Train and Gate Hoare Logic Properties
S.No. Property Conditions

Hoare logic properties for Train Component
CT1 Train starts and covers

25m in 118144 cycles
Pre: y_out == 0. Inv: y_out ≥
0.Post: y_out == 25∧cycles ≤
118144

CT2 If train is between 0
and 15m then within
110000 cycles it’s po-
sition will be 23m.

Pre:0 ≤ y_out ≤ 15.
Inv:y_out ≥ 0. Post: cycles ≤
110000 ∧ y_out == 23.

Hoare logic properties for Gate Component
CG1 Gate closes in 118144

cycles.
Pre: up == 1 ∧ down == 0 ∧
x_out == 10. Inv: up ̸= down.
Post: up == 0 ∧ down == 1 ∧
cycles ≤ 118144 ∧ x_out = 0

CG2 When gate is down it
opens in 110000 cy-
cles.

Pre: up == 0 ∧ down == 1 ∧
x_out == 0. Inv: up ̸= down.
Post: up == 1∧x_out == 10∧
down == 0 ∧ cycles ≤ 110000

x_out and y_out is Gate and Train Position respectively.

We statically compute the timing of every function/loop/-
condition/assignment statement in the program which finally
lead to overall WCET. The overall time is then used in a
given property to be justified and is used in the post-condition.
For Example, WCET for the Train to complete one circle is
obtained as 118144 clock cycles. The pre and post conditions
for this property are listed in Table II, which say that gate
is initially open and the train is at the initial position. On
completion of one circle the train should have covered 25
m of distance and the gate position should be open. The
invariant condition in this case is the train and gate position
is always ≥ 0. It should be noted that it is a system level
contract which is refined by it’s component level contracts,
and is a synchronous parallel composition of those. Hence,
Hoare property CS1 = CT1 ∥ CG1. CT1 and CG1 are listed in
Table III. The validity of composition is correct as described
in Section III and Section IV. Similarly, the second property
we verified says that the gate opens in 110000 clock cycles,
since the time it was fully closed. In order to guarantee that the
properties passing in Z3 solver should also behave the same
way in Simulink®model, we compare the traces of Z3 model
with Simulink®model. If traces are same then the properties
should be passing in Simulink®model as well. Figure 5a shows
the trace of the train position generated by Simulink®and Z3
solver. We found similar traces for both the models on a
lockstep of 0.125 sec, with correlation coefficient of 1. This
means that the real time Hoare logic based properties also pass
in Simulink®. This also proves the efficacy of our approach.

B. Switch Tank Controller

A switch tank system consist of two water tanks [29]. Water
leaks from both the tanks at a constant rate. Water level in
these tanks is represented by continuous variables x1 and x2
respectively. The job of the controller is to keep water level
above a threshold level which we have taken as 0.25m for
both the tanks. Whenever water level goes below threshold
value(which is taken as 0.25 m), the inflow is switched towards
it, at this time, water level in second tank should be above the

9

upper threshold value of 1m. The ODE for water flow when
in first tank is given in Equation 9, while for the second tank
is given in Equation 10.

f(x1)
def
=

[
ẋ1
]
=

[
w - v1

−v2

]
(9)

f(x2)
def
=

[
ẋ2
]
=

[
w - v2

−v1

]
(10)

Here, w is constant flow of water into the tanks and is taken
as one, while, v1 is rate of water outflow from the first tank
and v2 is rate of water outflow from the other tank. We have
taken v1 = 0.6 while v2 = 0.5. The WCET for this benchmark
is 33078 cycles over at a lockstep of 0.02 seconds. The
timing properties verified based on Hoare logic are described
in Table IV. The first property in the Table is a composition
of properties CT01 and CT11. The individual properties are
refinement of system level property ST1. Similarly, ST2 is
satisfied by parallel composition of CT02 and CT12. Traces
of Z3 and Simulink®model is shown in Figure 5b. Similar
trace shows that the properties are proven for Simulink®model
as well.

TABLE (IV) Hoare Logic based Switch Tank Controller
timing Properties.

S.No. Property Conditions
ST1 Whenever CT 0 == 0

and CT 1 == 1,then
CT 0 == 1 within 33078
clocks.

Pre: CT 1 == 1 ∧ CT 0 == 0 ∧
x1 == 1 ∧x0 == 0.2. Inv: 0.25 ≤
x1 ≤ 1 ∧ 0.25 ≤ x0 ≤1. Post:
CT 1 == 0 ∧ CT 0 == 1 ∧ x0 ≥
1 ∧ x1 ≤ 0.25 ∧ cycles ≤ 33078

ST2 Whenever CT 0 == 1
and CT 1 == 0,

Pre: CT 0 == 1 ∧ CT 1 == 0 ∧
x0 == 1 ∧ x1 == 0.2

then CT 1 == 1 within
33078 clocks.

Inv: 0.25 ≤ x1 ≤ 1 ∧ 0.25 ≤ x0 ≤
1. Post: CT 1 == 1∧CT 0 == 0∧
x0 ≤ 0.25 ∧ x1 ≥ 1 ∧ cycles ≤
33078.

x0 and x1 are water levels of Tank1 and Tank2 respectively.

C. Steering Wheel controller

This benchmark is taken from [30]. The steering wheel
of an autonomous vehicle needs to be maintained within
the upper half plane as described in [30]. The controller of
steering wheel is an example of sliding mode control without

TABLE (V) Component level Tank Properties for Switch
Tank system

S.No. Property Conditions
Hoare logic properties for Tank1 Component

CT01 When Tank1 is empty it
becomes full in 33078
clocks

Pre: X0 ≤ 0.25. Inv: 0.25 ≤ 1.
Post: x0 ≥ 1 ∧ cycles ≤ 33078.

CT02 When Tank1 is full it be-
comes empty in 33078
clocks

Pre: X0 ≥ 1. Inv: 0.25 ≤ 1. Post:
x0 ≤ 0.25 ∧ cycles ≤ 33078.

Hoare logic properties for Tank2 Component
CT11 When Tank2 is full it be-

comes empty in 33078
clocks

Pre: x1 ≥ 1. Inv: 0.25 ≤ 1. Post:
x1 ≤ 0.25 ∧ cycles ≤ 33078.

CT12 When Tank2 is empty it
becomes full in 33078
clocks

Pre: X1 ≤ 0.25. Inv: 0.25 ≤ 1.
Post: x1 ≥ 1 ∧ cycles ≤ 33078.

chattering. The angular position of the steering wheel is rep-
resented by variable x while the angle of the steering wheel is
initially at π2 radians.Following standard convention, clockwise
movement of the steering wheel is considered negative and
anticlockwise as positive. Whenever the steering wheel rota-
tion reaches the left limit which is indicated by the condition
cos(x) ≤ -0.99, the turn is set to 1, the controller produces
a clockwise angular velocity (dr) of -4 rad/sec. Similarly,
when the right limit is detected which is indicated by the
condition: cos(x) ≥ 0.99, the angular velocity (dr) selected
is 0.1 rad/sec. The plant model outputs the angular position
of the steering wheel indicated by x and it’s cosine which is
horizontal projection of rotation. The ODE for steering wheel
movement is given in Equation 11. The system level properties
are composition of component level properties, if they respect
the criteria mentioned in Section III and Section IV. In this
case SW1 = ST1 ∥ STC1 and SW2 = ST2 ∥ STC2.
We also compared the trace from Simulink®and Z3 solver
and we found the trace values to be similar for both of the
properties on the given lockstep (which is 0.001 and is base
don ribustness criteria [27]). One such trace is shown in Figure
5d which compares cos(x) trace. Since properties are valid for
both of the traces, this benchmark as a result also confirm the
efficacy of our approach.

f(x)
def
=

[
ẋ
]
=

[
dr
]

(11)
The timing properties based on Hoare Logic are shown in

Table VI and are justified using these values.

TABLE (VI) Hoare Logic properties for steering wheel con-
troller.

S.No. Property Conditions
SW1 Whenever turn == 1

and cos(x) ≤ −0.99
then cos(x) ≥ 0.99 in
1844430 clock cycles.

Pre:turn == 1 ∧ cos(x) ≤ −0.99.
Inv:cos(x) ≤ 0.99 ∧ cos(x) ≥ −0.99
Post: cos(x) ≥ 0.99 ∧ cycles ≤
1844430.

SW2 Whenever turn == 0
and cos(x) ≥ 0.99
then cos(x) ≤ −0.99 in
11000 cycles.

Pre: turn == 1 ∧ cos(x) ≥ 0.99. Inv:
cos(x) ≤ 0.99 ∧ cos(x) ≥ −0.99.
Post: cos(x) ≤ −0.99 ∧ cycles ≤
11000

D. Nuclear Temperature Controller

This benchmark is presented in [31]. There are two control
rods in a nuclear reactor which act as coolants. The coolant
temperature must be kept within the range [θm, θM]. When
the temperature reaches a maximum value of θM, the tank
is cooled with one of the rods and only that rod should be
selected for which the time elapsed since it was last used ≥
T time units. The ODE for rate change of temperature and
the time related to the use of control rods is described in
Equation 12. Here vi represents the rate change of temperature
in the nuclear reactor, such that whenever i = 1, then rod1
is selected and if i = 2, then rod2. Finally, the temperature
in the nuclear reactor rise at the rate v3(here i=3) and is
given as θ̇. The WCET of the benchmark is 43000 clock
cycles. The timing properties verified based on Hoare logic
are described in Table VIII. The system level properties

10

TABLE (VII) Component level Properties for Steering wheel
system

S.No. Property Conditions
Hoare logic properties for Steering Component

ST1 Time between cos(x) ≤
-0.99 to cos(x) ≥ 0.99 is
1844430 cycles

Pre: cos(x) ≤ −0.99. Inv:
0.99 ≤ cos(x) ≥ −0.99

Post: cos(x) ≥ 0.99 ∧
cycles ≤ 1844430.

ST2 Time between cos(x) ≥
0.99 to cos(x) ≤ −0.99
is 11000 cycles

Pre: cos(x) ≥ 0.99. Inv:
0.99 ≤ cos(x) ≥ −0.99.
Post:cos(x) ≤ −0.99 ∧
cycles ≤ 11000

Hoare logic properties for Controller Component
STC1 Time between Turn =

1 and Turn = 0 is
1844430 cycles

pre: Turn == 1. Inv:
¬(Turn == 0 ∧ Turn ==
1). Post: Turn == 0 ∧
cycles ≤ 1844430.

STC2 Time between Turn = 0
and Turn = 1 is 11000
cycles.

Pre: Turn == 0. Inv:
¬(Turn == 0 ∧ Turn ==
1). Post: Turn == 1 ∧
cycles ≤ 11000

are listed in Table VIII are a synchronous composition of
component level properties described in Table IX. The trace
equivalence between Simulink®and Z3 model is established
with a correlation co-efficient of 1 is shown in Figure 5c,
which indicates the efficacy of our approach.

f(θ, x1, x2)
def
=

 θ̇ẋ1
ẋ2

 =

vi

1
1

 (12)

TABLE (VIII) Hoare Logic based Nuclear Temperature con-
troller timing properties.

S.No. Property Conditions
1 Whenever rod2 is se-

lected then temperature
Pre: sel == 2 ∧ x2 > 6 ∧ θ ≥
15

in the nuclear reactor
drops below 6 Degrees

Inv: x1 ∧ x2 ≥ 0 ∧ θ ≥ 0

within 40200 clock cy-
cles

Post:θ < 6 ∧ x1 > 6 ∧ x2 ==
0 ∧ cycles ≤ 40200.

2 Whenever rod1 is se-
lected then temperature

Pre: sel == 1 ∧ x1 > 6 ∧ θ ≥
15

in the nuclear reactor
drops below 6 Degrees

Inv: x1 ∧ x2 ≥ 0 ∧ θ ≥ 0

within 40200 clock cy-
cles

Post:θ < 6 ∧ x2 > 6 ∧ x1 ==
0cycles ≤ 40200

VIII. RELATED WORK

Model checking is about the reachability analysis of hybrid
systems and lot of work has been done in this regard. For
instance, work done by [32] employs a rule based approach, in
which a rule-based logical model of the controller is obtained
from the Unifying Modelling Language (UML) based state
machine diagram. Then the static verification of the model is
done by plugging it to a model checker. Once all the properties
are justified, the rule based model is transformed into a syn-
thesizable model to be prototyped in Field Programmable Gate
Array (FPGA) device. The type of properties considered are

TABLE (IX) Component level Nuclear temperature con-
troller Properties.

S.No. Property Conditions
Hoare logic properties for temperature Component

T1 When rod2 counter x2 >
6, then it is reset in 40200
clocks

pre: x2 > 6. Inv: x2 ≥ 0. Post:
x2 == 0 ∧ cycles ≤ 40200.

T2 When rod1 counter x1 >
6, then it is reset in 38000
clocks

pre: x1 > 6. Inv: x1 ≥ 0. Post:
x1 == 0 ∧ cycles ≤ 38000.

Hoare logic properties for controller Component
CT1 When rod2 is selected,

then it is reset in 40200
clocks

Pre: sel == 2. Post : sel ==
0 ∧ cycles ≤ 40200.

CT2 When rod1 is selected,
then it is reset in 40200
clocks

Pre: sel == 1.Post: sel == 0∧
cycles ≤ 40200.

safety and liveness properties. Another work [33] which uses Z
language constructs and prototype verification system (PVS)
as formal verification tools, for doing the static verification
of CPS applications which are modeled using UML. Another
work [34] which does contract based formal verification of
intelligent hybrid systems modeled in Simulink®. To achieve
this the Simulink®models are transformed into differential
dynamic logic, the deductive formal verification of such model
is done using interactive theorem prover called KeYmaera X.
Work done in [35] provides a framework for compositional
verification of Simulink®models with interacting components.
Many works focusing on assume-guarantee based reasoning
of contracts [10]–[14]. But none of the works focus on real
time contract based reasoning for hybrid systems. Secondly,
majority of the works described on static reasoning of con-
tracts use LTL based contract verification. It is worth noting
that static reasoning of contracts is not possible using standard
LTL (described in Section II). Any LTL property cannot reason
about the first and last state of any program code, but still
the property holds on the stack trace of the code snippet.
Such assumptions and guarantees on any program can be
very well justified by using Hoare logic [3] not by using
standard LTL. We claim that our technique of static reasoning
using Hoare logic based real time contracts is more sound
than the existing ones. It not only guarantees the safety-
critical behavior of hybrid systems along with reachability
and liveness guarantees, but it also has a sound reasoning
capability of the program stack trace.

IX. CONCLUSION

We have presented a novel real time Hoare logic contract
based reasoning technique for hybrid system models. None of
the works presented so far have used WCET based real-time
Hoare rules to derive SMT encodings based on Hoare logic
contracts. Contrasting existing works, we have not used LTL to
justify the system contracts as they are not fit to do so, rather
we have used hoare logic based contracts, which effectively
reason the behavior of hybrid system models. Our real-time
Hoare logic rules are also sound since all the properties based
on them are justified by the Z3®SMT solver.

11

REFERENCES

[1] T. Liebrenz, P. Herber, and S. Glesner, “A service-oriented approach for
decomposing and verifying hybrid system models,” in Formal Aspects
of Component Software, F. Arbab and S.-S. Jongmans, Eds. Cham:
Springer International Publishing, 2020, pp. 127–146.

[2] L. Aştefănoaei, S. Bensalem, and M. Bozga, A Compositional
Approach to the Verification of Hybrid Systems. Cham: Springer
International Publishing, 2016, pp. 88–103. [Online]. Available:
https://doi.org/10.1007/978-3-319-30734-3_8

[3] B. Meyer, “Applying’design by contract’,” Computer, vol. 25, no. 10,
pp. 40–51, 1992.

[4] A. Sangiovanni-Vincentelli, W. Damm, and R. Passerone, “Taming
dr. frankenstein: Contract-based design for cyber-physical systems,”
European journal of control, vol. 18, no. 3, pp. 217–238, 2012.

[5] A. Benveniste, B. Caillaud, D. Nickovic, R. Passerone, J.-B. Raclet,
P. Reinkemeier, A. Sangiovanni-Vincentelli, W. Damm, T. Henzinger,
and K. G. Larsen, “Contracts for system design,” Ph.D. dissertation,
Inria, 2012.

[6] W. Damm, H. Hungar, B. Josko, T. Peikenkamp, and I. Stierand, “Using
contract-based component specifications for virtual integration testing
and architecture design,” in 2011 Design, Automation & Test in Europe.
IEEE, 2011, pp. 1–6.

[7] S. Quinton and S. Graf, “Contract-based verification of hierarchical
systems of components,” in 2008 Sixth IEEE International Conference
on Software Engineering and Formal Methods. IEEE, 2008, pp. 377–
381.

[8] A. Benveniste, B. Caillaud, and R. Passerone, “A generic model of
contracts for embedded systems,” arXiv preprint arXiv:0706.1456, 2007.

[9] A. Benveniste, B. Caillaud, A. Ferrari, L. Mangeruca, R. Passerone,
and C. Sofronis, “Multiple viewpoint contract-based specification and
design,” in International Symposium on Formal Methods for Components
and Objects. Springer, 2007, pp. 200–225.

[10] A. Cimatti and S. Tonetta, “Contracts-refinement proof system for
component-based embedded systems,” Science of computer program-
ming, vol. 97, pp. 333–348, 2015.

[11] M. Lindgren, “Practical verification of stateful embedded c code using
finite state machines and vcc,” 2020.

[12] W. Dong, Z. Chen, and J. Wang, “A contract-based approach to
specifying and verifying safety critical systems,” Electronic Notes in
Theoretical Computer Science, vol. 176, no. 2, pp. 89–103, 2007.

[13] I. Sljivo, O. Jaradat, I. Bate, and P. Graydon, “Deriving safety contracts
to support architecture design of safety critical systems,” in 2015 IEEE
16th International Symposium on High Assurance Systems Engineering,
2015, pp. 126–133.

[14] C. Nandi, “Contracts for real-time, safety critical systems,” Tech. Rep.,
2014.

[15] C. A. R. Hoare, “An axiomatic basis for computer programming,”
Communications of the ACM, vol. 12, no. 10, pp. 576–580, 1969.

[16] S. Andalam, P. Roop, A. Girault, and C. Traulsen, “Pret-c: A new
language for programming precision timed architectures,” Ph.D. disser-
tation, INRIA, 2009.

[17] I. Liu, J. Reineke, D. Broman, M. Zimmer, and E. A. Lee, “A pret mi-
croarchitecture implementation with repeatable timing and competitive
performance,” in 2012 IEEE 30th international conference on computer
design (ICCD). IEEE, 2012, pp. 87–93.

[18] Q. Carbonneaux, J. Hoffmann, and Z. Shao, “Compositional certified
resource bounds,” in Proceedings of the 36th ACM SIGPLAN Conference
on Programming Language Design and Implementation, 2015, pp. 467–
478.

[19] R. Alur, “Timed automata,” in International Conference on Computer
Aided Verification. Springer, 1999, pp. 8–22.

[20] P. Nuzzo, “Compositional design of cyber-physical systems using con-
tracts,” Ph.D. dissertation, UC Berkeley, 2015.

[21] P. Nuzzo, M. Lora, Y. A. Feldman, and A. L. Sangiovanni-Vincentelli,
“Chase: Contract-based requirement engineering for cyber-physical sys-
tem design,” in 2018 Design, Automation and Test in Europe Conference
and Exhibition, 2018, pp. 839–844.

[22] A. Permenev, D. Dimitrov, P. Tsankov, D. Drachsler-Cohen, and
M. Vechev, “Verx: Safety verification of smart contracts,” in 2020 IEEE
Symposium on Security and Privacy (SP), 2020, pp. 1661–1677.

[23] P. Nuzzo, J. B. Finn, A. Iannopollo, and A. L. Sangiovanni-Vincentelli,
“Contract-based design of control protocols for safety-critical cyber-
physical systems,” in 2014 Design, Automation and Test in Europe
Conference and Exhibition, 2014, pp. 1–4.

[24] T. Dreossi, A. Donzé, and S. A. Seshia, “Compositional falsification of
cyber-physical systems with machine learning components,” Journal of
Automated Reasoning, vol. 63, no. 4, pp. 1031–1053, 2019.

[25] D. Gurov and J. Westman, “A hoare logic contract theory: An exercise in
denotational semantics,” in Principled Software Development. Springer,
2018, pp. 119–127.

[26] surinder sood, “train gate controller code,” https://bitbucket.org/
surindersood/z3code/src/master/tgt.py, 2022, [Online;].

[27] G. E. Fainekos and G. J. Pappas, “Robust sampling for mitl specifica-
tions,” in International Conference on Formal Modeling and Analysis of
Timed Systems. Springer, 2007, pp. 147–162.

[28] S. Sood, A. Malik, and P. Roop, “Robust design and validation of cyber-
physical systems,” ACM Transactions on Embedded Computing Systems
(TECS), vol. 18, no. 6, pp. 1–21, 2019.

[29] J. Lygeros, G. Pappas, and S. Sastry, “An introduction to hybrid
system modeling, analysis, and control,” Preprints of the First Nonlinear
Control Network Pedagogical School, pp. 307–329, 1999.

[30] J. W. Ro, A. Malik, and P. Roop, “A compositional semantics of
simulink/stateflow based on quantized state hybrid automata,” in Pro-
ceedings of the 17th ACM-IEEE International Conference on Formal
Methods and Models for System Design, 2019, pp. 1–11.

[31] R. Alur, C. Courcoubetis, T. Henzinger, P. Ho, X. Nicollin, A. Olivero,
J. Sifakis, and S. Yovine, “The algorithmic analysis of hybrid systems,”
in 11th International Conference on Analysis and Optimization of
Systems Discrete Event Systems. Springer, 1994, pp. 329–351.

[32] I. Grobelna, “Formal verification of control modules in cyber-physical
systems,” Sensors, vol. 20, no. 18, 2020. [Online]. Available:
https://www.mdpi.com/1424-8220/20/18/5154

[33] G. Magureanu, M. Gavrilescu, and D. Pescaru, “Validation of static
properties in unified modeling language models for cyber physical
systems,” Journal of Zhejiang University SCIENCE C, vol. 14, no. 5,
pp. 332–346, 2013.

[34] P. Herber, J. Adelt, and T. Liebrenz, “Formal verification of intelligent
cyber-physical systems with the interactive theorem prover keymaera x.”
in Software Engineering (Satellite Events), 2021.

[35] T. Liebrenz, P. Herber, and S. Glesner, “A service-oriented approach for
decomposing and verifying hybrid system models,” in Formal Aspects
of Component Software, F. Arbab and S.-S. Jongmans, Eds. Cham:
Springer International Publishing, 2020, pp. 127–146.

https://doi.org/10.1007/978-3-319-30734-3_8
https://bitbucket.org/surindersood/z3code/src/master/tgt.py
https://bitbucket.org/surindersood/z3code/src/master/tgt.py
https://www.mdpi.com/1424-8220/20/18/5154

	Introduction
	Motivating Example and Problem Description
	Hoare logic
	Background of Hoare Logic
	Hoare Logic contracts

	Contract based compositional reasoning
	Translating Simulink®model into the Imperative language
	Syntax of the imperative Language
	Semantics of the Imperative language
	Translating Simulink® model to imperative language

	WCET based Real-time Hoare Logic rules
	WCET syntactic derivation rules
	Generating SMT encoding by applying Real-time Hoare rules in contract based design

	Benchmarks tested
	Train Gate Controller
	Switch Tank Controller
	Steering Wheel controller
	Nuclear Temperature Controller

	Related work
	Conclusion
	References

