
A Reinforcement-Learning Style Algorithm for
Black Box Automata

Itay Cohen
Department of Computer Science

Bar Ilan University
Ramat Gan 52900, Israel
itay.cohen5@live.biu.ac.il

Roi Fogler
Department of Computer Science

Bar Ilan University
Ramat Gan 52900, Israel

roi.fogler@gmail.com

Doron Peled
Department of Computer Science

Bar Ilan University
Ramat Gan 52900, Israel
doron.peled@gmail.com

Abstract—The analysis of hardware and software systems is
often applied to a model of a system rather than to the system
itself. Obtaining a faithful model for a system may sometimes
be a complex task. For learning the regular (finite automata)
structure of a black box system, Angluin’s L∗ algorithm and
its successors employ membership and equivalence queries. The
regular positive-negative inference (RPNI) family of algorithms
use a less powerful capability of collecting observations for
learning, with no control on selecting the inputs. We suggest and
study here an alternative approach for learning, which is based
on calculating utility values, obtained as a discounted sum of
rewards, in the style of reinforcement learning. The utility values
are used to classify the observed input prefixes into different
states, and then to construct the learned automaton structure.
We show cases where this classification is not enough to separate
the prefixes, and subsequently remedy the situation by exploring
deeper than the current prefix: checking the consistency between
descendants of the current prefix that are reached with the same
sequence of inputs. We show the connection of this algorithm with
the RPNI algorithm and compare between these two approaches
experimentally.

I. INTRODUCTION

Studying and analyzing models is one of the basic themes
of computer science. Models can be used to study the very
basic idea of computability (Turing Machines) and complexity.
Models are also used to analyze systems, e.g., in testing and in
model checking. Different models are used in understanding
natural languages, and, on the other hand, in performing
different tasks during compilation of programs. Often, the
object to which one applies an algorithm is a model of an
actual system, rather than the system itself. This allows the
algorithm to become affordable, when the actual system is
not directly accessible, or contains far too many details to
be analyzed. Consequently, the results of using such a model
become dependent on its faithfulness.

Software and hardware verification often uses a model that
is created by the person/team that performs the verification.
One can try to learn a model of a system through interacting
with it, or even try to apply the verification algorithm while
interacting directly with the system. Unfortunately, learning a
model, while performing an algorithm, or as a preliminary
step, is of high complexity. A prominent example for this

This research was funded in part by EU2020 grant FOCETA: Foundations
for Continuous Engineering of Trustworthy Autonomy.

situation is a “combination lock”, which is a sequence of n
elements, each one of which with k possibilities. Overall, there
are kn possibilities for the combination, and this is also the
order of magnitude of experiments that are needed to learn
it. On the other hand, the high complexity is an advantage
when such a lock is used to protect one’s valuable things.
Unfortunately, a combination lock can be embedded in a
learned model, even in a basic model like finite automaton.

Learning a finite automaton model, i.e., a black box au-
tomaton, has gained considerable attention in the research
community. It can be part of natural language recognition [11],
or a part of verifying a black box finite state system [21]. One
notable algorithm is Angluin’s L∗ learning algorithm [2]. This
algorithm uses two kinds of queries: (a) membership queries,
that are used to check if a given sequence belongs to the
learned language (i.e., is accepted by the corresponding regular
automaton), and (b) equivalence queries, which are used to
check if a conjectured automaton is indeed equivalent to the
learned language, and if not, returning a distinguishing exam-
ple. Implementing the equivalence learning is computationally
hard, exactly because of the combination lock phenomenon:
checking an exponential number of combinations, in the size
of the learned automaton, is required to guarantee that such
a combination does not lead to a behavior distinguishing
the learned and the actual automata. The Angluin family of
algorithms [2], [12], [13], [24] have control on the learned
model that allows to query about any particular input and
obtain the output.

Another family of algorithms [11] are based on obtaining a
set of input sequences with the corresponding output; there is
no capability of choosing the input, or comparing a candidate
model. These algorithms provide a good match to the reported
samples and in the limit, given a large enough number of
reported experiments, can converge in the limit into an exact
representation. The RPNI algorithm [19] [20] is a prominent
example of such an algorithm, based on positive and negative
samples.

We suggest here a utility based learning algorithm that
uses some elements of reinforcement learning. It collects
observations in the style of Monte Carlo experiments from the
black box automaton that is subject to learning. Reinforcement
learning calculates a utility value for each one of the involved

1

states. This value approximates the expected discounted sum
of rewards on paths that start after a given prefix. The goal in
reinforcement learning is to optimize a path that commences
from each state to its successor; such a path is obtained by
selecting to move each time to a successor state that has a
maximal utility value. In our case, the calculation of the utility
value, which is a numeric signature of the prefix, is used to
separate the provided observation prefixes according to the
states reached. We will henceforth also say informally that
the numeric signatures separate the states (reached using the
prefix). The transition relation can then be calculated from
the experiments by observing how a state that is reached
in an observed prefix transfers to another reached state by
the occurrence of an input. We show via counterexamples
that it is not always sufficient to provide utility value in
the style of reinforcement learning to achieve a a complete
separation of the states of a black box through such a numeric
signature. Subsequently, we fix this problem and achieve a full
separation by checking in more depth the consistency based
on continuations of the prefixes.

We compare different versions of our algorithm with the
RPNI algorithm based on various selected examples of differ-
ent characteristics, with varying number of states.

II. PRELIMINARIES

A. The Model
A finite automaton A = (S, ι,Σ, δ, F) has the following

components:
• S is a finite set of states.
• ι ∈ S is the initial state.
• Σ is a finite set of inputs.
• δ : S × Σ 7→ S is the transition function.
• F ⊆ S are the accepting states. We also denote F

alternatively as an output function F : S 7→ {0, 1}, where
F (s) = 1 when s is accepting, and F (s) = 0 otherwise.

We define δ∗ as the transitive closure of δ, i.e., δ∗(s, ε) = s
and δ∗(s, x.a) = δ(δ∗(s, x), a).

An execution or observation σ = s0a1s1 . . . sn is an
alternating sequence of states and actions, where s0 = ι, and
for each 0 ≤ i < n, δ(si, ai+1) = si+1. In fact, it is sufficient
to write σ = a1a2 . . . an and the corresponding states will
follow from the definition of the automaton. We will also
use the notation o0a1o1a2o2 . . . on to denote the alternating
sequence of outputs and inputs (with o0 = F (ι)).

In a Markov Chain, the transitions from a state are selected
according to some probabilistic distribution. Thus, in addition
to the above we have a probabilistic distribution p : S ×Σ 7→
[0, 1] such that for each s ∈ S, the sum of p(s, a), where
a ∈ Σ is 1. This means that from the state s, the action a is
taken with probability p(s, a).

When learning an automaton A, we assume that our system
is a black box, where we know only the input alphabet Σ and
can reset it to its initial state. In order to learn the structure
of the black box, we can observe executions. The different
learning algorithms that we will discuss make different as-
sumptions about the ability to observe the executions. The

Angluin learning algorithm assumes that we can issue an
execution that starts with the initial state based on the inputs
and inspect its outputs. The RPNI algorithm can only observe
the inputs and outputs of the executions (again that start from
the initial state) provided by the learned system. In the latter
case, the selection of actions from states are done according to
some probabilistic distribution. Thus, the black box is, in fact,
a Markov Chain. We do not necessarily know the distribution,
and it is not in our control. We are also not interested to
learn this distribution; we are only interested in obtaining the
transition relation. However, it is important to assume that
there is such a distribution that is kept fixed along the learning
process. The distribution may be state dependant, but not time
dependant. This prevents the situation where there are two
sequences σ and σ′ that reach the same state s, where the
probability of executing some sequence ρ after σ is different
from the probability of executing ρ after σ′.

A trie or a prefix tree is a search tree T = (G,Σ, δ, r, w),
with a set of states S, a set of symbols (letters) Σ, a transition
function δ, an initial root state r and a labeling w : G 7→ Σ∗.
The edges (g, a, g′), i.e. where δ(g, a) = g′, are labeled with a
symbol a ∈ Σ. Each node g ∈ G in the trie is associated with
a word w(g) that is obtained from concatenating the symbols
labeling the edges from the root r to g. The root r is labeled
with the empty word ε. A trie can be used, e.g., to store a
dictionary, where the entry for a word σ = w(g) is stored at
the node g. The complexity of reaching a word σ from the
root, by following the symbols of σ labeling the edges from
the root of the trie, is then the length of it |σ|.

B. The Angluin’s Learning Algorithm

In [2], Angluin describes an algorithm L∗ for learning the
minimal deterministic automaton that corresponds to a given
black box A. Angluin’s learning algorithm builds a candidate
automaton A∗ by making observations, called membership
queries, on the system A, i.e., invoking a procedure test(v)
that returns 1 if v is executable in the black box after a
reset to its initial state, and 0 otherwise. Once the algorithm
has obtained a candidate solution A∗ that is consistent with
all the observations run so far, it uses a procedure called
equivalence query that checks whether L(A∗) = L(A). If not,
the procedure gives a minimal sequence σ (the discrepancy)
distinguishing A∗ from A. The learning algorithm then uses
σ to refine the current solution. The equivalence queries use
further membership queries, based on the Chow-Vasilevskii
algorithm [8], [25].

To construct a candidate automaton, the algorithm keeps
two sets of sequences: a prefix-closed set of access sequences
V ⊆ Σ∗ and a suffix-closed set of distinguishing sequences
W ⊆ Σ∗. Each sequence v in V corresponds to reaching a
state of A∗ by executing v from s0. Different sequences may
lead to the same state.

The algorithm keeps a table T : (V ∪ V.Σ)×W → {0, 1}
such that for any v ∈ V ∪ V.Σ we have T (v, w) = 1 if and
only if vw ∈ L(A).

2

We define an equivalence between the rows of the table
∼⊆ V.Σ × V.Σ as v ∼ v′ if T (v, w) = T (v′, w) for every
w ∈W . The access sequences in V will eventually, correspond
to nodes in the candidate automaton constructed from the
table T ; then equivalent rows correspond to reaching the same
state from the initial state with the row’s access sequence.
To construct the candidate automaton from the table T , it
is necessary that T is closed, i.e., for every v ∈ V and
a ∈ Σ there exists v′ ∈ V with v′ ∼ va. This means that the
successors of access sequences in V are equivalent to some
access sequences that are already in V . If T is not closed, we
add va to V and fill the table with new rows va.Σ and columns
w according to membership queries. It is also necessary that
the table T is consistent, i.e., for all v ∼ v′, if T (v, a) = 1,
then T (va, w) = T (v′a,w) for all w ∈ W . Intuitively, this
means that if two rows in the table correspond to the same
state, then their corresponding successors also corresponding
to the same state. If this is not the case, the sequence aw is
added to W and we fill the table accordingly with membership
queries.

When the table T is closed and consistent, we set A∗ =
([V/ ∼], ε,Σ, δ), where the transition relation δ is defined as
follows. Let [v] be a ∼ equivalence class of v. Set δ([v], a) =
[v′] when v′ ∼ va. This relation is well defined when the table
T is closed and consistent. We then invoke an equivalence
checking oracle on A∗. If the oracle returns a discrepancy σ,
for each prefix v of σ that is not in V , we add v to V and
update T accordingly.

The L∗ algorithm makes O(n2|Σ|) membership queries and
at most n calls to the oracle. Its running time is O(n3|Σ|) +
Toracle, where Toracle is the total time spent by the oracle [22].
Unfortunately, the implementation of the oracle [8], [25],
carries out a lower bound of exponential time complexity in
the size of the learned automaton. The Angluin algorithm
achieves an exact representation of the learned black box.
However, it assumes control over the membership queries
it uses. Furthermore, implementing the equivalence queries
necessarily takes exponential time.

C. The RPNI Algorithm

The RPNI algorithm [19] [20] consists of two phases. In
the first phase, we collect a set of input sequences from Σ∗

with their corresponding outputs. The sequences are divided
to two sets: sequences with output 0, called negative and are
denoted by S−, and sequences with output 1, called positive
and are denoted by S+. The algorithm builds a prefix tree
acceptor PTA(S+) using paths starting from the initial state
are the collected positive input sequences (S+).

In the second phase, the prefix tree is folded into an automa-
ton by iteratively combining states with consistent futures.
The consistency between states, defined below, means that
their outputs cannot be distinguished by any negative sequence
based on the collected sequences. In this phase, the nodes
are partitioned into red, blue and white. Red nodes are those
that were already processed. Blue nodes are the immediate
successors of the red nodes, and are the candidates for being

merged with red nodes in cases of compatibility. The other
nodes are white.

The second phase progresses while not all the nodes are
red, starting with the root being the only red node. Then, a
blue node s1 is selected, and the algorithm attempts to merge
it with some red node s2. For such a merge to succeed, the
algorithm checks consistency with the negative examples (S−)
by validating that each of the negative sequences collected
during the first phase does not accept in the merged automaton.
Finding such inconsistent successors s1

′ and s2
′ means that

s1 and s2 cannot be merged. On the other hand, if there are
no inconsistencies, corresponding successors s1 and s2 due to
a commonly labeled path are merged as well.

Let |S+| and |S−| be the sum of the lengths of prefixes
in S+ and S− respectively. The prefix tree acceptor (PTA)
contains O(|S+|) states. Hence, the loop described in the
second phase performs O(|S+|)2 state merges. In addition,
each merge can cause O(|S+|) merges in the worst case. The
consistency check complexity is O(|S−|). Overall, the time
complexity of the algorithm is (O(|S+|+O(|S−|)) ·O(|S+|2)

D. Reinforcement Learning

Reinforcement Learning (RL) includes methods for learning
to efficiently interact with an environment [17]. The typical
model for the environment in RL is a Markov Decision Process
(MDP). At each step, an action is selected, and the successor
state is reached depending on a probabilistic distribution that
depends on the current state and action taken. While the
selection of action is in the control of the system, and is
the choice sought after by RL, the transition to the successor
state is made by the environment, based on the corresponding
probability distribution. A numeric reward is given to every
selected action, and its value depends on the current state and
the action taken.

The goal of reinforcement learning is to find an optimal
selection among the possible choices when interacting with
the environment. Optimality is defined as maximizing a utility
value assigned to each state of the environment related to the
fitness of the future selections and based on the future rewards.
Often, this value is the expected sum of rewards associated
each with an action selected during the execution. In order
not to consider infinite sums, the values along the execution
can be discounted by γn with respect to the future distance n
from the current point, with 0 < γ ≤ 1 (or, alternatively, be
summed up with respect to a finite horizon).

RL calculates a strategy π : S 7→ T that selects the
action that needs to be taken from a given state s. The
value Vπ(s) is the expectation (the results of the transitions
can depend on the probabilistic distribution of the selected
actions) of the discounted sum of rewards, starting from s,
and selecting actions according to the strategy π. RL seeks
a strategy that will maximize this utility value; the value
of which is denoted as V (s) without indicating the strategy
in the subscript, as a unique “best” strategy is selected. RL
algorithms can iterate between calculating the utility value and

3

improving the strategy, or can combine these two tasks into
one [17].

A key aspect in finding an optimal strategy π that maximizes
the values of Vπ(s) for each state s, is to estimate the utility
values of a given strategy. When the probabilistic distribution
p of transiting between states is known, one can directly
calculate the utility values according to the Bellman Equation

Vπ(s) = r(s, π(s)) + γ × Σs∈S(p(s, π(s), s′)× Vπ(s′))

by solving a set of equations, or using a fixpoint improvement
calculations until it converges. When this distribution is not
known, different methods are applied to estimate the utility
values of a given strategy. One method is based on Monte
Carlo experiments, where sums of rewards of sequences from
s are sampled. For more information on RL techniques,
see [17].

III. UTILITY BASED LEARNING

A. The Basic Algorithm

We will describe now a black box learning algorithm that
combines ideas from both Angluin’s L∗ algorithm, RPNI and
reinforcement learning. The principles are as follows:

We do not know the states of the learned black box B.
Hence, we use a prefix tree to reach its different states.
As in Angluin’s algorithm, where the rows of the algorithm
consist of a prefix tree, or in RPNI, there can be different
sequences from the initial state that reach the same state
and we need to separate these sequences. Angluin’s algorithm
uses distinguishing sequences, which consist of the columns
in the table, to separate these sequences according to the
different states in the learned automaton. RPNI combines
states provided that their future successors in the constructed
prefix tree are consistent with the negative observations. This
means that if there is a suffix of the collected observations
extending the current path from the root, which is marked
with σ from both s and s′ that disagree on acceptance, then
s and s′ cannot be combined.

The separation in our algorithm is based on a utility value
V (σ) assigned to a sequence σ in the generated prefix tree.
The goal is to have in the limit that V (σ) = V (σ′) if and
only if δ∗(ι, σ) = δ∗(ι, σ′). That is, the sequences σ and
σ′ reach the same state. We show later that we achieve this
goal only partially, i.e., given enough observations, the only
if part holds up to some minor difference (as calculation does
not continue indefinitely), but not necessarily the if part. We
later show how to overcome this problem, separating prefixes
further by looking at the consistency of values between their
corresponding extensions.

As in RL, this value is the expected discounted sum of
rewards on paths that start at a given state in the prefix
tree. The individual rewards values on a path depend on both
the next encountered action, and, for additional flexibility,1

whether or not the current and successor states are accepting

1This in fact guarantees that we will separate at least the prefixes that end
with an accepting state from those that end with a non-accepting state.

or not. The expected value is calculated using RL Monte Carlo
techniques, i.e., by calculating the discounted sum of rewards
based on given observations of the black box. Observations
start at the initial state ι of the black box, and the utility
values are kept in a generated prefix tree. Intuitively, in an
experiment ρ.δ, we update the expected value after ρ based
on the discounted sum of rewards calculated for δ.

In our case, the model to be learned, playing the role of an
environment, behaves as a deterministic finite automaton rather
than an MDP. In fact, unlike classical RL, we only have an
environment that we want to learn, and do not have an agent
that we want to control to interact with the environment. Thus,
there is only one “strategy” and we directly calculate V (σ) that
depends on parameters of the environment rather than Vπ(σ).
The system provides a set of observations that consist of inputs
and outputs. There can be a probabilistic distribution where
the system chooses some a ∈ Σ when reaching its internal
state s, as in a Markov Chain, but we are not aware of this
probability, nor do we care to learn it.

Our goal is to estimate the utility values of the single
strategy mentioned above. We do that by applying a Monte
Carlo based technique. A reported sequence σ is an alternating
sequence of outputs and inputs o0i1o1i2 . . . on, where ij ∈ Σ
and ok ∈ {0, 1}. We calculate the discounted sum ds(σ) using
the following parameters:
• γ The discounting factor.
• R(i) The reward for getting out of an accepting state by

taking an action i.
• R′(i) The reward for getting into an accepting state by

taking an action i.
• r(oj , ij , oj+1) The reward assigned to the symbol ij ,

based on its adjacent outputs oj , oj+1. It is defined as
follows:

r(oj , ij , oj+1) =

R(ij) if oj = 1

R′(ij) if oj = 0 and oj+1 = 1

0 otherwise
Then, ds is defined recursively as follows:
• ds(o) = 0 (This is the case of a sequence of size 0 with

only a single output o).
• ds(ojijoj+1ρ) = r(oj , ij , oj+1) + γ × ds(oj+1ρ).

Note that the reward does not depend on the current state, as
we do not know the state of the learned automaton.

We keep a data structure V (σ) that returns the calculated
value for the expected discounted sum for the continuation
of any collected prefix σ. The structure can be organized as
a trie (a dictionary tree) or using a hash table. In fact, we
need to use as a key only the sequence of inputs from σ,
and the outputs are redundant. There are two elements that
are kept: V.E(σ), which is the partially calculated expected
discounted sum itself, and V.N(σ), which is the number
of continuations considered after σ. The longer σ is, the
less accurate its expected sum becomes. Hence, we keep the
elements V.E, V.N for prefixes up to a certain length. This
length is denoted by acc len. The update for a sequence σ.ρ
is defined using the procedure update(σ, ρ, acc len), where σ

4

is the prefix that was already processed; it can consist of only
the inputs, and ρ is the suffix that is needed to be considered.

Algorithm 1 Monte Carlo Utility Value Estimation
procedure UPDATE(σ, ρ, acc len)

switch ρ do
case ρ = o

ds := 0 (end of sequence)
case ρ = oj ij oj+1ρ

′

ds := r(oj , ij , oj+1)+
γ × update(σojij , oj+1ρ

′)

if |σ| ≤ acc len then
if new(σ) then

V.N(σ) := 0
end if
V.E(σ) := V.E(σ)× V.N(σ)

V.N(σ)+1 + ds
V.N(σ)+1

V.N(σ) := V.N(σ) + 1
end if
return ds

end procedure

Note that the selection of the given observations are not in
the control of the learning algorithm. We do not assume a par-
ticular probability distribution on the selection of the actions
(inputs) from any given state; nor we are interested to learn
these probabilities, but merely the structure of the automaton.
With different probabilities, we will obtain different values.

In the limit, the utility value V (σ) and V (σ′) are the
same, when the prefixes σ and σ′ in the prefix tree end
with the same state. Of course, the values calculated by our
algorithm for V (σ) and V (σ′) only approximate the limit
values. We cluster the prefixes over their utility values using
the DBSCAN clustering algorithm [16]. We fix the parameters
for this algorithm: the minimal number of points required to
form a dense region minPts is set to 1. Another parameter
that we fix is the density parameter ε, which controls how far
joint values can be apart from each other while considered to
be in the same cluster.

After clustering, the transition relation of the learned au-
tomaton can now be easily recovered from the prefix tree,
since a prefix that ends with a state s and is extended by an
action a to a state s′ forms a transition δ(s, a) = s′. The initial
state ι is identified with the state at the root r of the prefix
tree. Accepting states can be identified from the prefix tree as
those that have output 1.

The complexity of DBSCAN is O(n2) in the number of
points to be clustered [26]. But the average time complexity is
Θ(n×log(n)) (when the ε parameter is chosen in a meaningful
way) [16]. In our case, n is the size of the prefix tree.

B. A Limitation of the Utility Based Separation

The presented approach of assigning rewards may suffice
to separate the states from one another in a variety of finite
automata. However, in some cases, it is impossible to dis-
tinguish between two automaton states solely by their utility

values based on the expected sum of future rewards as defined
above. We show a simple example that demonstrates that a
one dimensional numeric signature for each prefix might be
insufficient to learn an automaton.

s4

s6

a

s5

b

s3

b

a

a, b

s0

s1
a

s2

b

b

a

a

b

Fig. 1. This automaton cannot be learned based on numeric signatures alone

In figure 1, the finite automaton accepts only four words
over the alphabet Σ = {a, b}. To prove that this automaton
cannot be learned using the proposed approach, we need to
show that two or more automaton states cannot be distin-
guished, for any parameters choice of the model. We focus on
states s1 and s2 and prove that based on the current model,
V (s1) = V (s2) (since in the limit the value assigned to a
prefix σ depends only on its last state s, we denote here V (s)
instead of V (σ)) for any choice of parameters. We assume we
cannot control the transition selection probabilities of selecting
a after the state s in the black box, denoted as p(s, a).
Therefore it is sufficient to prove that there exists an transition
selection distribution for which two or more automaton states
cannot be distinguished.

For the sake of the proof, assume that the transitions
of the black box were drawn from a uniform distribution
p(s, a) = 1/|Σ| for each s ∈ S. Recall that we do not have
control over the distribution, hence it is sufficient to fix a
particular case of a distribution for which the selection of the
(in fact any) reward parameters would not help making the
separation. Let F be the accepting states of the automaton,
and δ be its transition function. Again, we denote the rewards
for getting out of an accepting state by R(a), R(b) and
R

′
(a), R

′
(a) for getting into an accepting state. In any other

case we set the reward to be 0. The reward function is defined
as follows:

r(s, a) =

R(a) if s ∈ F
R′(a) if s 6∈ F and δ(s, a) ∈ F
0 otherwise

At this point, we can directly evaluate the utility values
of the different states using the Bellman Equation. Let γ be
the discount factor and s be a given automaton state.

V (s) =
∑
a∈Σ

p(s, a)(R(s, a) + γV (δ(s, a)))

We then construct a linear system of equations for our
example, based on the above formula.

5

1 − γ
2

− γ
2

0 0 0 0
0 1 0 − γ

2
− γ

2
0 0

0 0 1 − γ
2

− γ
2

0 0
0 0 0 1 0 − γ

2
− γ

2
0 0 0 0 1 − γ

2
− γ

2
0 0 0 0 0 1 −γ
0 0 0 0 0 0 1− γ

×

V (s0)
V (s1)
V (s2)
V (s3)
V (s4)
V (s5)
V (s6)

=

[
0 0 0

R′
a
2

R′
b
2

Ra
2

+ Rb
2

0

]T
The solution for this linear system of equations is the
utility values of each automaton state.

V (s0)
V (s1)
V (s2)
V (s3)
V (s4)
V (s5)
V (s6)

= 1

4

γ2R′a + γ2R′b + γ3Ra + γ3Rb
γR′a + γR′b + γ2Ra + γ2Rb
γR′a + γR′b + γ2Ra + γ2Rb

2R′a + γRa + γRb
2R′b + γRa + γRb

2Ra + 2Rb
0

⇒ V (s1) = V (s2).

Consequently, the utility based approach would identify
s1 and s2 as a single state. It is easy to show that by
selecting another distribution for the learned automaton, like
p(s, a) = 0.4, p(s, b) = 0.6, separation will be achieved.

It is natural to ask whether we can refine the calculation of
the utility value in order to be able to achieve the separation
for any learned automaton. One proposed refinement is to set a
discount factor γσ for each observed symbol a ∈ Σ, such that
if a 6= b, then γa 6= γb. It is easy to show that this refinement
allows learning the automaton presented in figure 1, assuming
the same transition selection distribution as before.

Although the refined approach is richer than its previous
version, we devised another example where it fails. In figure
2, we present an automaton that accepts only six words over
the alphabet {a, b, c}. In this example, we focus on states q1

and q2. The accepting suffixes of q1 are “abc”, “cab”, “bca”,
while the accepting suffixes of q2 are “bac”, “cba”, “acb”. By
applying a similar analysis as before, it can be demonstrated
that the states q1 and q2 have an identical expected sum of
rewards, under the different discount factors assumption. In
fact, this pair of states has the same utility value for any
selection of probability distribution of black box transitions,
and for any discount factors values assigned for each selected
action.

Although a direct use of utility values cannot always ensure
a full separation, it can be proved that some separation can be
achieved. Based on the reward function defined in this section,
it is easy to see that an accepting state and a nonaccepting state
always have different utility values.

Lemma III.1. Let s be a state such that s ∈ F and s′ be a
state where s′ 6∈ F . Then there exists a reward function r and
a discount factor γ such that V (s) 6= V (s′).

IV. REFINING THE UTILITY BASED LEARNING

The mentioned counterexamples are the evidence that a full
separation of states might be a challenging task when relying

Fig. 2. Automaton that cannot be learned through refining the discount factor

exclusively on the calculated utility values. Therefore, we
designed a mixed approach with two variants. This approach
uses the utility values to obtain a initial separation of observed
prefixes. Then, this separation is refined by a further analysis
on the prefixes that happen to be in the same cluster. This
analysis is done in two similar ways as shown in the following
subsections.

A. Utility Based Learning with Lookahead

As discussed in section III, learning an automaton at the
black box setting can be somewhat challenging when relying
entirely on the approximated utility value of each prefix.
Indeed, the expected sum of rewards for each prefix cap-
tures a portion of each state’s characteristics, however we
observed that there are cases where this information might
be insufficient to separate all the states. To mitigate this,
one possible approach is to obtain an initial partition of the
observed prefixes using the utility value of each prefix, and
then refine this partition by further analyzing prefixes that
were clustered together. Considering prefixes σ, σ′ that were
associated to the same state by the initial partition. We try
to separate σ from σ′ by checking if there exists a ρ such
that accept(σ.ρ) 6= accept(σ′.ρ), while accept is a predicate
relying on the accept/reject information collected for each
observed prefix on the value approximation phase.

We now describe the course of the algorithm of this
approach. We denote the sequence (episode) length in the
Monte Carlo experiment by ep len. Long prefixes are revisited
less frequently than shorter ones, therefore their approximated
utility values tend to be less accurate. Hence, prefixes that are
longer than e.g., 0.65 × ep len, are not considered for the
clustering that creates the initial partition between observed
prefixes. Shorter prefixes (< 0.65 × ep len) will be referred
to as the kernel of the prefix tree containing all the observed
prefixes.

As in the basic utility based approach, the initial separation
of the kernel prefixes was accomplished using clustering
over their utility values using DBSCAN. Then, we refine

6

the clustering; we inspect each cluster and attempt to split
it to subclusters, if possible. For each cluster, we inspect its
associated prefixes one by one; for each prefix ρ, we check
if its descendants accept/reject information is consistent with
each one of the already created subclusters. In case it is
inconsistent with all of them, a new subcluster is created.

The refined clusters are considered to be the learned automa-
ton states and we can construct the structure of the automaton
(transition function, initial state and accepting states) using
the prefix tree as described above for the basic utility based
approach.

We assume that V is the utility value function of a given
prefix. Let accept be a predicate relying on the accept/reject
information collected for each observed prefix. For two pre-
fixes ρ1 and ρ2 we denote ρ1 ≡ ρ2 if they represent the same
state of our black box automaton.

Lemma IV.1. ρ1 ≡ ρ2 if and only if V (ρ1) = V (ρ2) and for
each suffix σ, accept(ρ1.σ) = accept(ρ2.σ).

B. Utility Based with Dual Clustering
The above approach presents a refinement of the initial

separation, using an accept/reject information of the observed
prefixes. We assume that beyond the kernel, the numeric
signature may not be as accurate as inside the kernel. However,
despite being less accurate, those values may still capture some
relevant information for splitting the initial clusters correctly.
We present here an approach that is based entirely on utility
values to refine the initial separation. This approach lets us
refine the initial separation based on applying clustering again,
this time for longer prefixes. This allows us to learn the
final partition of prefixes without relying on the accept/reject
information.

This approach uses clustering twice in the following manner.
At first, an initial partition of prefixes is obtained using clus-
tering over the kernel prefixes. This time, we set kernel len
to be 0.5 × ep len. Let the density parameter of the first
separation be ε1.

We define a broader region of prefixes that will be clustered
again – the compatible region. We denote the compatible
region boundaries by comp len, and set comp len = 0.75×
ep len. Prefixes shorter than comp len are referred to as
compatible region prefixes. Since this region contains some
longer prefixes with less accurate utility values, it is assumed
that a coarser clustering is obtained in this step. To obtain a
coarser separation, a larger density parameter is used, denoted
by ε2.

Similarly to the previous approach, we now refine the kernel
prefixes separation. However, this time the refinement is done
by considering an extension of prefixes up to the compatible
region boundaries. To split an initial cluster to subclusters
we iterate its elements likewise. However, when checking
consistency between prefix extensions, their coarse clustering
association is considered, instead of their accept/reject infor-
mation.

We discuss the convergence proof of the dual clustering
approach. For simplicity, we assume that our alphabet contains

two symbols, Σ = {a, b}. Denote the rewards for getting out
of an accepting state by Ra, Rb, and R

′

a, R
′

b for getting into
accepting state. In any other case, the reward will be 0. We
Assume that T is the prefix tree and V is the utility value
function of a given prefix. For two prefixes ρ1 and ρ2 we
denote ρ1 ≡ ρ2 if they represent the same state of our black
box automaton.

Lemma IV.2. ρ1 ≡ ρ2 if and only if V (ρ1) = V (ρ2) and for
each suffix σ, V (ρ1.σ) = V (ρ2.σ).

V. EXPERIMENTS

We compare our reinforcement-learning-style approaches
with the RPNI algorithm, taking into account the minimal
amount of samples required for correct learning, and the aver-
age learning time. The utility based learning with lookahead
approach requires collecting random episodes from a black
box automaton. The RPNI algorithm learns from collecting
positive and negative sets of samples, not necessarily observ-
ing acceptance and rejection of prefixes of these samples. To
better compare between RPNI and our algorithm, we set a
baseline setting to our experiments. Accordingly, both RPNI
and our algorithm are required to gather their samples using
the black box queries outlined above.

Suites of Examples: We experimented with five suites of
examples, each suite consists of automata with a varying
amount of states.

The first suite consists of four “combination lock” automata,
where the smallest one has four states and the largest one
has seven. These automata are challenging to learn, as all
the accepting strings own a single prefix of the length of the
automaton. For instance, figure 3 shows the largest automaton
in this suite. All its accepting prefixes share the common prefix
“aaabba”.

q0

b

q1a

q2b

q3

a
a

q4

b

a

q5

b

b
a

q6

a, b

b

a

Fig. 3. A combination lock automaton with seven states

In section III we discussed an example that cannot be
learned using our basic utility based approach. We devised
a set of five automata based on this example with a varying
number of states. We called them “cross” automata. Figure 4
shows one example in this set with eleven states. This set of
automata might be somewhat challenging for our approaches
to learn since its examples contain a few pairs of states with
an identical expected sum of rewards. We have already proved
that the automaton in figure 1 has one such pair, and it can
be proved that a cross automaton with fifteen states has five
of these pairs.

7

Fig. 4. A cross automaton with eleven states

The third suite of examples are automata that validate
a correct structure of balanced parentheses. We devised a
set of four automata with different lengths. The smallest
of them (figure 5) accepts balanced parentheses with three
open parentheses at the most. The largest automaton accepts
balanced parentheses with six open parentheses at most. This
suite of examples is somewhat challenging to learn, since very
few generated sequences are accepted.

Fig. 5. Automaton that validates a structure with three balanced parentheses
at most

The fourth suite of examples consists of automata that repre-
sent divisibility machines. With only two possible transitions
out of each state, we check binary numbers divisibility. We
assume the bits are scanned left to right as the way they
are normally written. Thus, the most significant bit (msb) is
scanned first and the least significant bit (lsb) is scanned last.

Let n be the value of a binary number at some point in the
scanning process and let its remainder upon division by d be
r. Hence, n can be written as n = md+r for some integer m.
Possible values for the remainder are r ∈ {0, 1, . . . , d − 1}.
These remainder values will correspond to the states of the
automaton. If b is the value of the next scanned bit (lsb) then
the new value of the binary number will be 2n+b and the new
remainder will be (2r+b)mod d. The automaton then proceeds
to the new remainder state. We start in r = 0 state and if a
sequence ends there, the number it represents is divisible by
d. Our examples consists of divisibility machines by 4 (Figure
6), 5, 6, 7 and 9. Note that in these examples, every prefix can
be extended into an accepting one.

Fig. 6. Divisibility by 4 automaton

The last suite of examples are four automata that
represent a combination of two simple divisibility ma-
chines. Let Div(m,n) be the language {w | #a(w)
mod m = 0 and #b(w) mod n = 0} over the alphabet
{a, b}∗. The automata in this suite accept the languages

Div(2, 2), Div(2, 3), Div(2, 4), Div(3, 3). Figure 7 exhibits
the automaton that accepts the language Div(2, 3).

s0 s1 s2

s3 s4 s5

a

b

a

b

a

b

a

b

a

b

a

b
Fig. 7. Automaton that accepts the language Div(2, 3)

RPNI and Utility Based Learning with Lookahead Com-
parison: We first compare the utility based learning with
lookahead approach with the RPNI algorithm in the black box
automaton setting in terms of time and minimal amount of
samples required for learning. The results of processing time
and number of collected samples for both algorithms are the
average results of ten tests with a success rate of at least 80%.
In each one of the two algorithms we checked and used the
black box episode length that was minimal for a successful
learning.

To make a proper comparison, we also implemented the
RPNI algorithm, following [19]. The implementation can be
divided to two major parts, building the Prefix Tree Acceptor
(PTA), and the learning part. To build the PTA, we applied
the same method as used in our implementation to generate
episodes that are valid sequences under the given alphabet.
Each prefix of a generated episode was added to a positive set
or a negative set according to its accept/reject information.
A PTA and its transitions were updated according to the
positive samples. In addition, the accepting states were marked
as accepting in the PTA. After building the PTA, a minimal
automaton was created, according to the following scheme: a
“blue” state was selected and tried to merge with “red” state.
The merge occurs if the resulted automaton is consistent with
all the negative samples.

All the experiments were conducted on the same machine
with an Intel® Core™ i7 CPU at 2.6 GHz and 16GB of
RAM, running on a Windows 11 operating system. Both
algorithms were implemented in Python. The source code for
our implementation is available on GitHub [10].

We present here a description of the course of the ex-
periments of the comparison. For each suite of examples,
the rewards and discount factor values remained fixed for
the utility based learning with lookahead approach. The only
parameters that changed between different examples were
the length of sampled episodes and the DBSCAN’s ε value.
We chose the minimal episode length that enabled a correct
learning and adjusted the ε parameter to minimize the number
of samples required for learning.

The first suite of examples we tested was the cross automata
suite. These automata have a finite amount of accepting pre-
fixes, which makes it easier to distinguish between automaton

8

Exp. (No. States) Min. Amount of Samples Learning Time (s)
UB learning RPNI UB learning RPNI

Cross (7) 397 192 0.008 0.04
Cross (9) 555 416 0.008 0.12
Cross (11) 1454 419 0.09 0.27
Cross (13) 3228 522 0.12 0.64
Cross (15) 4089 620 0.2 0.93
Comb. Lock (4) 181 92 0.01 0.02
Comb. Lock (5) 591 210 0.01 0.06
Comb. Lock (6) 2031 192 0.25 0.06
Comb. Lock (7) 8148 200 1.32 0.07
Divisibility. 4 (3) 85 45 0.004 0.009
Divisibility. 5 (5) 221 172 0.01 0.08
Divisibility. 6 (5) 179 143 0.004 0.04
Divisibility. 7 (7) 1264 364 0.06 0.31
Divisibility. 9 (9) 1344 791 0.07 1.32
Parenthesis. 3 (5) 905 219 0.04 0.03
Parenthesis. 4 (6) 5252 590 0.23 0.12
Parenthesis. 5 (7) 21107 1483 1.22 0.439
Parenthesis. 6 (8) 86482 4192 3.43 1.4
Div(2,2) (4) 91 27 0.003 0.01
Div(2,3) (6) 232 60 0.02 0.04
Div(2,4) (8) 876 112 0.06 0.11
Div(3,3) (9) 958 96 0.08 0.15

TABLE I
BENCHMARK RESULTS - RPNI AND UTILITY BASED LEARNING WITH

LOOKAHEAD

states. Hence, relatively less iterations were required to learn
the different automata. Larger differences between the various
rewards had high impact on the learning time. The episode
length values varied between 9 for the smallest automaton in
the suite and 13 for the largest automaton in the suite. When
compared to RPNI, it is notable that utility based learning
with lookahead needed more samples to successfully learn the
different automata in this suite, but did it in less time.

For the combination lock suite, the rewards are chosen
to be larger than the rewards in the previous suite. This is
motivated by a few states having similar utility values in early
experiments. Larger rewards helped in separating the values of
these states. The episode length values were 8 for the smallest
automaton in the suite and 13 for the largest automaton in the
suite.

For the third suite, balanced parentheses, the examples are
characterized by a relatively high ratio of negative/positive
examples and as a result require longer episode lengths than
the combination lock suite. Again, episode length and ε varied
between the different examples. Depending on the size of the
automaton, the length values varied between 10 to 19.

For the fourth suite, divisibility machines, the ratio of
negative/positive examples is lower when compared to the
previous suites. The reason behind this is that every prefix
is extendable into an accepting sequence. Here, a relatively
short episode length was required for a successful learning, 7
for the smallest automaton in the suite and 11 for the largest
automaton. Consequently, learning these examples required
a relatively short processing time. In comparison to RPNI,
utility based learning with lookahead required more samples
to successfully learn the automata in this suite, but did it in
less time.

The last suite to be tested was the combined divisibility
suite. Each automaton in this suite has a unique property -
given a random prefix over the alphabet Σ = {a, b}, there in

an identical probability for each automaton state to be asso-
ciated with this prefix. As a result, the automaton state visits
distribution is almost uniform in the Monte Carlo step. This
enables the different utility values be relatively accurate within
less iterations. The episode length values varied between 7
to 10. We can see that utility based learning with lookahead
needed less time to successfully learn the different automata
in this suite, but needed more samples to do so comparing to
RPNI.

For each suite of examples, the rewards and the discount
factors were identical across all examples. In table II, we
exhibit the rewards given for each action in three different
cases: getting out of an accepting state, entering an accepting
case, and any other case. Different rewards values were given
for different actions (values are separated by ’,’ in table). In
addition, the discount factors we used were 0.6 for the cross,
combination lock and combined divisibility suites and 0.2 for
the divisibility and parenthesis suites.

Experiment Reward acc-in Reward acc-out Reward rej
Cross 20,120 300,240 0,0

Comb. Lock 20,400 1200,800 0,0
Divisibility 20,120 300,240 0,0
Parenthesis 20,400 1200,800 0,0
Div(m,n) 20,120 300,240 0,0

TABLE II
REWARDS CHART - UTILITY BASED LEARNING WITH LOOKAHEAD

In the evaluation of RPNI across the different suites, the
episode length was the only parameter to vary, i.e, there was
no need for the parameter ε as DBSCAN was not used. It was
selected to be the minimal successful length in term of learning
the automata. The length values range between 8− 16 for the
cross suite, 5− 8 for the combination lock suite, 4− 8 for the
divisibility suite, 7 − 17 for the parenthesis suite and 5 − 7
for the combined divisibility suite. Full comparison between
RPNI and utility based learning with lookahead is given in
table I.

Dual Clustering Approach: We compare the dual clustering
approach with RPNI. Similarly to the former approach, this
approach requires a greater number of samples for learning
an exact representation comparing to RPNI. As can be seen
in table III below, in terms of processing time, this approach
has faster processing time for two suites of examples out of
five. Still, the results are slightly worse than the utility based
learning with lookahead approach.

Experiment (No. States) DC time (s) RPNI time (s)
Cross (7) 0.02 0.04
Cross (9) 0.03 0.12
Cross (11) 0.25 0.27
Cross (13) 0.55 0.64
Cross (15) 1.21 0.93

Divisibility. 4 (3) 0.004 0.009
Divisibility. 5 (5) 0.01 0.08
Divisibility. 6 (5) 0.008 0.04
Divisibility. 7 (7) 0.1 0.31
Divisibility. 9 (9) 0.07 1.32

TABLE III
BENCHMARK RESULTS - RPNI AND DUAL CLUSTERING LEARNING TIME

9

Since dual clustering approach applies clustering twice, it
requires an additional parameter, ε2, which is the density
parameter of the course clustering. In addition, learning an
exact representation with this approach requires a relatively
longer episodes. Hence, the episode length values were mod-
ified accordingly. Due to space limitations, we omitted the
parameters table and full benchmark results for this approach.

Relying Exclusively on the Accept/Reject Information:
When experimenting with the utility based learning with
lookahead approach, it was evident that the accept/reject
information of the observed prefixes was key in learning the
right separation. To test effectiveness we use utility values that
create the initial separation of kernel prefixes. We designed a
second variant to the utility based learning with lookahead
approach, in which the step of the initial separation based on
utility values is completely omitted from the algorithm. The
initial separation becomes a single cluster consists of all the
observed prefixes. This cluster needs to be splitted solely based
on the accept/reject information of the observed prefixes. Note
that in this variant the rewards, discount factor and ε do not
exist. We tested this variant on the different suites. Table IV
exhibits the minimum samples and processing time for cross
automata.

Experiment (No. States) Samples Time (s)
Cross (7) 1064 0.06
Cross (9) 1631 0.09

Cross (11) 4109 0.27
Cross (13) 8388 0.49
Cross (15) 13817 0.75

TABLE IV
RELYING EXCLUSIVELY ON THE ACCEPT/REJECT INFORMATION - CROSS

AUTOMATA RESULTS

It is evident that in this suite, the utility values that create
the initial separation between prefixes are indeed useful.
The utility based learning with lookahead approach uses less
samples to successfully learn the black box automaton, and as
a result does it in a shorter amount of time.

VI. CONCLUSION

Obtaining a faithful model of the dynamics (i.e., time
changeable) structure of a system has been the subject of
vast research. Depending on the given information about the
learned system, such algorithms may considerably differ from
each other. Angluin’s L∗ algorithm for learning an automaton
and its successors assume the capability of making experi-
ments where inputs for the system are selected by the algo-
rithm and the corresponding outputs are given. Moreover, the
algorithm can use an oracle that compares between a candidate
model and the actual system and provide a counterexample
experiment in case they differ. On the other hand, the RPNI
algorithm builds a model that is consistent with a collection
of observations, without being able to control the selection of
inputs in the observations or using an oracle to compare the
model with the actual system.

We look here at learning a finite state model for a system
based on collecting the same observations as in the RPNI
algorithm. Both methods use a prefix closed set of examples.

However, we calculate a utility value V (σ) for prefixes σ of
the collected observations. These values represent the expected
value of the discounted sum of rewards, based on the sequence
of inputs and outputs of that appear after σ in the collected
observations. As such, the utility values depend on multiple
future sequences occurring after σ. Our initial motivation is
to separate prefixes σ and σ′ that reach different states so
that V (σ) 6= V (σ′). Otherwise, when σ and σ′ end with the
same state, V (σ) = V (σ′). Then, the states of the learned
automaton can be obtained based on the separation of the
prefixes. Furthermore, the transitions of the learned structure
can be directly obtained based on the progress between states
that is available in the collected observations. The values V (σ)
are used to separate states reached after observed prefixes. This
can be comapared with the compatibility test between nodes
to be unified in the RPNI algorithm, and using the separation
sequences in the Anguluin algorithm.

It follows from the congruence property of automata the-
ory that prefixes that reach the same state will have utility
values that will become closer together as we collect more
experiments. The first question that we ask is whether such
a separation always exists. When choosing a fixed probability
distribution of transitions, we show a negative example, where
a few states will not be separated. This happens for any
collection of rewards, which depends on both the inputs and
the outputs (for generality) of each step in the observation. It
is important, for a more refined version of our algorithm, that
it is easy to guarantee that at least the sequences reaching the
accepting states will be separated from the sequences reaching
the non accepting states. Later on, we show that a more refined
utility based approach, where different discounting factors
are assigned to different selected actions may be sufficient
to successfully learn the negative example. We then show a
second counterexample, where this refined approach fails as
well. In this example, any probability distribution of black box
transition, and any assignment of discount factor values will
not be able to provide separation. This case demonstrates that
a utility based approach alone might be inadequate for the
purpose of finite automata learning.

In order to rectify this problem, we suggested a mixed
approach, where an initial separation is first achieved, and
then this separation is refined by looking deeper into obser-
vations that extend the prefixes that were not distinguished.
Accordingly, if V (σ) = V (σ′), then we will still try to
separate σ from σ′ by checking if there exists a ρ such that
V (σ.ρ) 6= V (σ′.ρ). Intuitively, ρ is used as a separation
sequence, between σ and σ′, which is an ingredient that
exists implicitly in RPNI and explicitly in Angluin’s algorithm.
Alternatively, we can make such separation based only on
the accept/reject information after each such sequence ρ.
Consequently, we have experimented with several choices of
our utility based approach and with RPNI.

Our experiments show mixed results; on the one hand, it
seems that inherently, the utility value based approaches need
relatively more samples to successfully learn an automaton
compared to RPNI. On the other hand, in two automata suits

10

out of five, both utility value based approaches were faster
when attempting to learn an exact representation of the black
box automaton. The utility based learning with lookahead
approach was faster in three suites out of five.

When considering the utility based learning with lookahead
approach, we witnessed that the initial clustering based on
utility values may assist in learning in a more efficient way
comparing to solely relying on the accept/reject information
of the observed prefixes. We showed this principle when
experimenting with the cross automata suite. In addition,
although utility based learning with lookahead needs more
samples comparing to RPNI, sometimes it required shorter
observations to correctly learn an automaton representation.
For instance, in three out of five cross automata examples,
RPNI could not learn a correct representation with the same
length that was sufficient for utility based learning with
lookahead (even when the RPNI was given all the possible
prefixes up to this length). Intuitively, this stems from the
additional information that is captured by the utility based
approach, which depends also on the frequency of occurrences
of observations; this can sometimes facilitate more accurate
learning, achieving a finer separation.

When evaluating both utility value based approaches on the
five automata suites, it is evident that the utility based learning
with lookahead variant, which further refines the separation
based on accept/reject outperformed the dual clustering ap-
proach in terms of processing time and amount of samples
required for learning.

In general, we suggest that the RPNI algorithm should be
more efficient for hard cases, e.g., when accepting executions
are rare. It should require less experiments in order to achieve
faithful learning, and in some but not all cases, the experiments
are also shorter. This makes the stage of collecting observa-
tions often more efficient in RPNI. On the other hand, RPNI’s
complexity of the stage of folding the prefix tree into an
automaton is cubic in the sum of lengths of the observations.
This is a deficiency with respect to the utility based approach,
where the complexity of creating an automaton from the
prefix tree is quadratic in the size of the prefix tree, due to
DBSCAN, and is often Θ(n × log(n)). As further work, we
would like to perform additional experiments for establishing a
more coherent comparison between the utility based approach
and RPNI; in particular, looking at models that correspond to
actual hardware and software systems.

Future work on this topic includes in evaluating the ability
of our approach to achieve an estimation of an automaton,
rather than achieving a completely faithful learning in com-
parison with other learning techniques (e.g., Angluin, RPNI).
Another challenge is using the utility based approach for
learning a probabilistic deterministic finite automaton, and
comparison with algorithms such as Alergia [5], [14].

REFERENCES

[1] R. Alur, P. Madhusudan, and W. Nam. Symbolic Compositional Verifi-
cation by Learning Assumptions. In CAV’05, LNCS, 2005.

[2] D. Angluin. Learning Regular Sets from Queries and Counterexamples.
Information and Computation, 75, 87-106 (1987).

[3] R. E. Bellman, Dynamic Programming, 1957.
[4] R. Alur, R. Grosu and M. McDougall. Efficient Reachability Analysis

of Hierarchical Reactive Machines In CAV’00, LNCS 1855, p.280-295,
2000.

[5] R. .C. Carrasco, J. Oncina, Learning Stochastic Regular grammars by
means of a state merging method. In Grammatical Inference AND
Applications, 139–152, Springer-Verlag, 1994.

[6] E. M. Clarke, O. Grumberg, D. Peled, Model Checking, MIT Press, 1999.
[7] E. Clarke, D. Long, K. McMillan. Compositional Model Checking. In

LICS’89, IEEE , p.353-362, 1989.
[8] T.S. Chow. Testing software design modeled by finite-states machines.

In IEEE transactions on software engineering, SE-4, 1978, 178-187.
[9] J. Cobleigh, D. Giannakopoulou, C. Pasareanu. Learning Assumptions

for Compositional Verification. In TACAS’03, LNCS 2619, p.331-346,
2003.

[10] https://github.com/itay99988/Utility-Based-Learning.
[11] E. M. Gold, Language Identification in the Limit. Inf. Control. 10(5):

447-474 (1967).
[12] Malt. Isberner, F. Howar, B. Steffen, The TTT Algorithm: A

Redundancy-Free Approach to Active Automata Learning. RV 2014: 307-
322.

[13] M.J. Kearns, U.V. Vasirani, An Introduction to Computational Learning
Theory, MIT Press, 1997.

[14] H. Mao, Y. Chen, M. Jaeger, T. D. Nielsen, K. G. Larsen, and
B. Nielsen, Learning Probabilistic Automata for Model Checking, Eighth
International Conference on Quantitative Evaluation of Systems, QEST
2011, IEEE Computer Society, 2011, 111–120.

[15] A. Mazurkiewicz, Trace Semantics, Proceedings of Advances in Petri
Nets, 1986, Bad Honnef, Lecture Notes in Computer Science, Springer
Verlag, 279–324, 1987.

[16] M. Ester, H. Kriegel, J. Sander, X. Xu A Density-Based Algorithm for
Discovering Clusters in Large Spatial Databases with Noise. In KDD’96,
LNCS, p.226-231, 1996.

[17] R. S. Sutton, A. G. Barto, Reinforcement Learning : An Introduction,
MIT Press.

[18] E. Ochmanski, Languages and Automata, in The Book of Traces, V.
Diekert, G. Rozenberg (eds.), World Scientific, 167–204.

[19] J. Oncina, P. Garcı́a inferring regular languages in polynomial updated
time, Series in Machine Perception and Artificial Intelligence, 1992, pp.
49–61.

[20] J. Oncina, P. Garcı́a Identifying regular languages in polynomial time,
Advances In Structural And Syntactic Pattern Recognition, , 1992, pp.
99–108.

[21] D. Peled, M. Vardi and M. Yannakakis. Black Box Checking. In
FORTE/PSTV’99, 1999.

[22] R. Rivest and R. Schapire. Inference of Finite Automata Using Homing
Sequences. Information and Computation, 103(2), p.299-347, 1993.

[23] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot. Duchesnay, E.
Scikit-learn: Machine Learning in Python. Journal Of Machine Learning
Research, p.2825-2830, 2011.

[24] F. W. Vaandrager, B Garhewal, J .Rot, T. Wißmann, A New Approach
for Active Automata Learning Based on Apartness. 223-243

[25] M.P. Vasilevskii, Failure diagnosis of automata, Kibertetika, no 4, p.98-
108, 1973.

[26] P. Viswanath and R. Pinkesh. l-dbscan : A Fast Hybrid Density based
Clustering Method, Proceedings of the 18th Intl. Conf. on Pattern
Recognition (ICPR-06), volume 1, pages 912.915, Hong Kong, 2006.
IEEE Computer Society.

[27] W. Weimer and G. Necula Mining Temporal Specifications for Error
Detection. In TACAS’05, LNCS 3440, p.461-476, 2005.

[28] G. Xie and Z. Dang. Testing Systems of Concurrent Black-boxes -
an Automata-Theoretic and Decompositional Approach. In FATES’05,
LNCS, 2005.

11

	Introduction
	Preliminaries
	The Model
	The Angluin's Learning Algorithm
	The RPNI Algorithm
	Reinforcement Learning

	Utility Based Learning
	The Basic Algorithm
	A Limitation of the Utility Based Separation

	Refining the Utility Based Learning
	Utility Based Learning with Lookahead
	Utility Based with Dual Clustering

	Experiments
	Conclusion
	References

