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Abstract—Static worst-case timing analysis is important in the
context of safety-critical systems as it is one approach that could
be used to validate the required timing bounds. In order to
derive accurate bounds, the worst-case timing analysis is per-
formed under (micro)-architecture consideration, consequently,
these bounds are expressed in processor cycles. The required
(micro)-architecture models are usually constructed by hand,
from processor manuals and validated through testing. Recent
advances in hardware design promote open hardware initia-
tives and high-level Hardware Description Languages (HDLs),
revisiting the perspectives to automatically construct (micro)-
architecture models for worst-case timing analysis. In this paper,
we present an approach concerning the construction of pipeline
datapath models from processor designs described in high-level
HDLs. We propose a methodology based on the Chisel/FIRRTL
Hardware Compiler Framework which we apply on several open-
source RISC-V processors.

Index Terms—processor design, WCET analysis, pipeline dat-
apath, HDL languages.

I. INTRODUCTION

Design and implementation of safety-critical systems is
standardized in order to identify and address potential haz-
ardous events [1]. For example, events like missing timing
deadlines would be deemed as unacceptable since these dead-
lines are mandatory in safety-critical systems. Thus, special-
ized timing analyses (i.e. worst-case) are required to derive
adequate timing bounds and to characterize, in this way, the
timing behavior of a system under consideration. Static worst-
case execution time (WCET) analyses are able to compute
safe and precise timing bounds while reasoning about the
executions of an input program on an underlying architecture.
In this setting, both aspects, that of the program and the
architecture, become equally important. Whereas the program-
level infrastructure required by the WCET analysis consists
of a standard control-flow graph (i.e. the input program is
the binary), at architecture-level, the analysis infrastructure is
more diverse. For example, the same control-flow graph is
used for cache analyses [2] whereas more specialized, cycle-
accurate models are necessary for pipeline analyses [3].

There are several state of the art static timing analyzers:
the industrial-strength tool aiT [4] and the academic ones
Otawa [5], Heptane [6] and Chronos [7]. All these propose
(micro)-architecture models of caches and pipelines, rely-
ing on static analysis to characterize their timing behaviors.
These (micro)-architecture models are usually developed by
hand and sometimes validated against hardware simulators
for conformance (e.g. for aiT [8] or Chronos [9]). A closer
code inspection of their pipeline models expose their common

attributes. First, these pipelines present a “flat” structure, more
precisely, the pipeline stages are represented with simple state
configurations (i.e. a single variable), reducing a pipeline stage
to an identification attribute. Second, these models focus on
how an instruction progresses through the pipeline and not its
actual semantics (i.e. the correctness of program execution is
assumed in the context of static WCET analysis). Third, these
models are designed to “execute” basic blocks (i.e. straight-
line code) and hence, certain pipeline circuitry, e.g. forwarding
is not explicitly encoded in the pipeline model but handled at
the code-level through arbitrary timing values. So, developing
such models at a proper abstraction level is essential to obtain
correct and precise WCET bounds.

Recent trends in hardware design led to more processor
code being made available'. This progress is also supported
by the emergence of new, high-level design languages (e.g.
Chisel [10] or SpinalHDL [11]), sitting at the top of special-
ized hardware compilation frameworks (e.g. FIRRTL [12]).
These hardware compilation chains also have the possibility to
define configurable optimizations through compilation passes.
In this context, the problem of deriving convenient pipeline
models is backed by a comprehensive hardware compilation
infrastructure.

In this paper, we propose an approach to construct pipeline
models directly from RISC-V processor code developed within
the Chisel/FIRRTL compilation framework. These pipeline
models should adhere to all (previously mentioned) design
characteristics required by a standard WCET analyzer. Since
we aim to apply our analysis on any freely available, Chisel-
based processor design, we also need to consider how the
processor is coded as the accuracy of the constructed pipeline
model depends on that. High-level HDLs, like Chisel pro-
mote design modularity and reusability, impacting the way a
pipeline is coded. For example, a pipeline could be developed
over several software-level modules connected through inter-
faces and/or using various kinds of internal structures to define
the pipeline circuitry. Hence, a pipeline construction analysis
should be able to handle all these design language issues.

In order to construct a datapath model out of high-level
HDL code, our approach determines the pipeline depth (i.e.
the number of stages) and identify how to connect these
stages. As such, our approach is designed around the pipeline
registers, as these are mapped to pipeline stages, similarly to
the ‘flat‘ pipeline models of the WCET analyzers. For each
software-level module of the pipeline design, our approach (1)
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extracts the registers and their intra-module relations and (2)
constructs input-output interfaces (i.e. through ports) for the
inter-module register connections. Our approach relies on a
register-to-pipeline stage assignment function to determine the
datapath model. In this way, our approach exposes the register
forwarding which, from a WCET analysis point of view,
creates a separation of concerns between (micro)-architecture
and program models. As such, our datapath model would
be suited for a wider range of timing properties than those
related to worst-case timing (e.g. timing anomalies or timing
leakage). We apply our approach on several open-source
RISC-V processors of various degree of complexity, i.e. from
single to multi-modular pipeline designs. A work-in-progress
version of this approach, limited to single module pipeline
designs is presented in [13].

This paper is organized as follows. Section II presents ele-
ments of the Chisel/FIRRTL Hardware Compiler Framework
and introduces non-trivial case studies. Section III presents the
approach towards automatically constructing abstract pipeline
models for the WCET analysis. Section IV reports on the
implementation and experimental results. Section V and Sec-
tion VI address the related work and the conclusions, respec-
tively.

II. CHISEL/FIRRTL FRAMEWORK AND ILLUSTRATION ON
RISC-V CORES

A. Hardware Compilation Framework: Chisel/FIRRTL

Chisel [10], is an open-source hardware construction lan-
guage embedded in Scala programming language. Chisel of-
fers a set of Scala libraries to write complex, parameterizable
circuit generators and new hardware types that can be manip-
ulated to produce synthesizable Verilog. We briefly introduce
in this section some features of Chisel with applications
in hardware designs of RISC-V processors. We focus on
those features which are particularly important to our pipeline
datapath construction approach.

Modules. A hardware design in Chisel would typically
consist of a set of modules. Chisel modules are defined using
Scala classes, i.e. the keyword class. A Chisel module
contains at least one interface wrapped in an object IO ().
For example, a Chisel Dat Path module of the RISC-V Sodor
processor [14] is defined as follows:

class DatPath(width: Int) extends Module {
val io = IO (new DpathIo ())
val if_reg_pc = Reglnit (io.reset_vector)

}

val d = Module(new DatPath())
d.io.reset_vector := io.reset_vector

The variable if_reg_pc is a register declared in-
side the module DatPath and initialized with a value
io.reset_vector while d is an instance of DatPath
which is further used to access and update this particular value.

Ports and Data Types. A port is simply any data object
that has directions assigned to its members. The Chisel module
DatPath of RISC-V Sodor processor defines a new type

DpathTo that can be used as an IO interface with ports de-
fined by Input/Output Chisel language constructs. Chisel
also provides Bundle which is a compound type to define
collections of values with named fields.
class DpathIo(width : Int) extends Bundle {
val reset_vector = Input(UInt())

val dec_inst = Output(UInt())
}

Other Constructs. A Chisel module features combinational
and/or sequential circuitry design elements using design primi-
tives. The operator : = executes a mono-directional connection
element-wise, while the operator <> is a bidirectional (i.e.
bulk) connection element-wise. The when construction defines
a conditional block.

class Rocket(width : Int) extends Bundle {
val ibuf = Module(new IBuf())
ibuf.io.imem <> io.imem.resp
when (lctrl_killd) {
ex_reg_pc = ibuf.io.pc
}
}

The operator <> is used to connect two modules, Rocket
and IBuf and the when block is used to perform a conditional
register update, whenever the condition evaluates to true.

Chisel lies at the top of a hardware compilation frame-
work as it compiles into an intermediate language named
FIRRTL (Flexible Intermediate Representation for RTL) [12]
and further, into Verilog code. The FIRRTL representation is
internally represented with an Abstract Syntax Tree (AST)
structure. The FIRRTL AST consists of IR nodes represented
by objects, each of which is a subclass of the following IR
abstract classes: circuit, module, port, statement, expression or
type. FIRRTL proposes different representations, also named
forms (i.e. high, low), with each form using a stricter and
simpler subset of the Chisel language features and defining
different transformations to generate the next (lower) form.
The high form supports high-level constructs such as bundle
type and conditional statements, while in the low form these
are simplified and flatten in order to be translated into Verilog.

B. RISC-V Cores Based Chisel

We introduce next several hardware design features, using
code snapshots of RISC-V processors designed using the
Chisel/FIRRTL compilation framework. We exemplify them
with the multi-modular and hierarchical pipeline design of the
Rocket processor [15] and the flat and parametric pipeline
construction of the Fuxi processor [16]. Finally, we present
two different implementations of the forwarding mechanism,
as developed in RISC-V Sodor [14] and Fuxi [16] processors.

Rocket Pipeline. Rocket is an in-order, scalar processor
based on the RISC-V Instruction Set Architecture (ISA) [17].
The Rocket core is a 5-stage pipeline (IF, ID, EX, MEM, WB).
However, it is sometimes presented as a 6-stage pipeline with a
separated stage implementing the branch prediction algorithm.

The Chisel design of Rocket consists of several modules
grouped into two parts — Frontend and Rocket, corre-
sponding to the pipeline frontend and the pipeline backend



respectively, as shown in Fig. 1. More specifically, the first
two stages, PC-generator and IF, are implemented in the
Frontend module while the remaining four pipeline stages
(i.e. from ID to WB) are in the Rocket module. Fig. 1 also
presents the connections between the pipeline design elements
(e.g. registers or input/output interfaces); the corresponding
code snippets are in Listing 1 in Chisel and in Listing 2, in
FIRRTL high form. From a code organization point of view,
the pipeline is developed in five modules: Rocket, IBuf,
Frontend, ShiftQueue and RocketTile.

Listing 1: Simplified Chisel code of Rocket datapath pipeline.

1 |class RocketTile:

2 val core = Module(new Rocket)

3 frontend.module.io.cpu <> core.io.imem
4

5 |class Rocket:

6 val ex_reg_pc = Reqg (size)

7 /+decls: mem_reg_pc and wb_reg_pcx/
8 val ibuf = Module (new IBuf)

9 when (condl) {
10 ex_reg_pc = ibuf.io.pc
11 /+updates: mem_reg_pc and wb_reg_pcx*/ }
12 ibuf.io.imem <> io.imem.resp

13

14 | class Frontend:

15 val 10 = I0(.../xcpu fieldx/)

16 /* decls: sl_pc and s2_pc */
17 s2_pc =sl_pc

18 val fg = Module (new ShiftQueue)
19 fg.io.engbits.pc = s2_pc

20 io.cpu.resp <> fg.io.deq
21
22 |class IBuf:
23 val io = new Bundle {/*imem and pc fieldsx*/}
24 val buf = Reg (io.imem.bits)
25 buf.pc = io.imem.bits.pc
26 io.pc := Mux (cond2, buf.pc, io.imem.bits.pc)
27
28 | class ShiftQueue :
29 io.deg.bits := ioc.engbits
Listing 2: High-form FIRRTL for Listing 1.

1 |[module RocketTile:

2 | inst frontend of Frontend

3| inst core of Rocket

4| core.io.imem.resp.bits.pc <=

5 frontend.io.cpu.resp.bits.pc

6| o~

7 |module Rocket:

8 | inst ibuf of IBuf

9 | when condl

10 ex_reg_pc <=ibuf.io.pc

11 /*updates: mem_reg_pc and wb_reg_pcx*/
12 | ibuf.io.imem.bits.pc <=

13 io.imem.resp.bits.pc

14 | ibuf.io.imem.bits.data <=

15 io.imem.resp.bits.data
16—

17 |module Frontend:

18 | output io {.../xcpu fieldx/}
19 | s2_pc <=sl_pc

20 | inst fgq of ShiftQueue

21 | fg.io.eng.bits.pc <=s2_pc

22 | /* explicit update, field by field, of <>/
23 | ————

24 |module IBuf:

25 | output io {/*imem and pc fields=/}
26 | reg buf.pc UInt<40>

27 | buf.pc < —io.imem.bits.pc

28 | node _io_pc_T_ 1 =

29 mux (cond2, buf.pc, io.imem.bits.pc)
30| io.pc <=_io_pc_T_1

31 |-——————

32 |module ShiftQueue:

33 | io.deq.bits.pc <=io.eng.bits.pc

Listing 1 illustrates the connection between the regis-
ters PC (i.e. those with _pc suffix) of all the pipeline
modules in different stages. The RocketTile module is
designed to connect the modules Frontend (not shown)
and Rocket, in line 2 using their respective 10 interface
(frontend.module.io.cpu <> core.io.imem), in
line 3. This connection is shown with red arrows in Fig. 1
and implemented using the bulk operator <> in Chisel. The
connections of this operator which are described also in line
12 are compiled, in FIRRTL, into partial connections of each
construction field, in lines 12-15 in Listing 2. The PC registers
ex_reg_pc, mem_reg_pc, wo_reg_pc are described in
the same module, i.e. Rocket, while the PC register of the
decode stage is presented in the IBuf module. IBuf is
instantiated in Rocket in order to connect the decode and
execute stages through the output io.pc which receives the
output of the register buf.pc in the IBuf module, in lines
28-30 in Listing 2.

The registers of decode and fetch stages are connected
through the interfaces between the corresponding modules.
The register buf .pc of the decode stage, in the IBuf mod-
ule, is interfaced with the input port io.imem.bits.pc, in
line 27 in Listing 2. The PC registers s1_pc and s2_pc of
the fetch stage are in the Frontend module, and s2_pc is
connected to the output port f£g.io.enqg.bits.pc which
is an element of the ShiftQueue module, in line 21 in
Listing 2. Here, the ShiftQueue module is used as an I/O
interface as it connects the input i0.enqgto io.deqg which is
connected to the output io.cpu. resp. Thus, the fetch stage
register s2_pc is connected to the output io.cpu.resp,
while the input io.imem.bits.pc is connected to the de-
code stage register buf . pc. Finally, the connections between
registers in pipeline stages are obtained through the interface
of the module RocketTile.

Fuxi Pipeline. Fuxi is a 32-bit pipelined RISC-V processor,
designed to run simple operating systems and bare-metal
software. In contrast to the hierarchical pipeline design of
Rocket, in Fig. 1, the pipeline design of Fuxi is flatter, in
Fig. 2. More precisely, each pair of pipeline stages (e.g.
Fetch and Decode) is connected through an interface I/0
named StageIO, described in a module MidStage.

Listing 3 shows a simplified Chisel implementation of how
the pipeline modules of Fuxi are connected. More precisely,
the module Midstage is instantiated several times, using the
StageIO interface, creating the pipeline connectors between
stages, in lines 2-3 of Listing 3. The connection of two pipeline
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Fig. 1: Datapath pipeline modules of Rocket core.

stages is through the I/O interface of Midstage, which
features two ports, prev and next, lines 14-15. Moreover,
Midstage contains a bundle register named ff, where each
field is a simple register.
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Fig. 2: Datapath pipeline modules of Fuxi.

Listing 3: Simplified Chisel code of Fuxi processor.

Forwarding of Sodor and Fuxi. Sodor is a family of
processors of different pipeline depths, from 1- to 5-stage.
We present, in Listing 4, a snippet of Sodor 5-stage processor
design, i.e. a classical IF to WB pipeline. More specifically,
we focus on its forwarding mechanism from the later pipeline
stages to the EX stage. The input to register exe_rs2_data
of EX is updated, in line 9, with the result of the forwarding,
through the wire dec_rs2_data, in lines 4-7. This forward-
ing is coded with a Chisel construct MuxCase — a syntactic
sugar for a cascade of multiplexers with conditions C1-C3.

Listing 4: Forwarding implementation in the pipeline of Sodor.

val exe_rs2_data = Reqg (size)
val dec_rs2_data =Wire (size)
/+* Cl1-C3: enable and selection signals x/
dec_rs2_data := MuxCase (rf_rs2_data,
Array (C1 — exe_alu_out,
C2 — mem_wbdata,
C3 — wb_wbdata))
when (C4) /+ C4: no stalling condition =/ { ..
exe_rs2_data := dec_rs2_data }

OO0 ANWNBAWN—

1 |class Core:

2 val ifid = Module(new MidStage(new FetchIO))
3 val idex = Module(new MidStage(new DecIO))

4 /* Idem for AluIO and MemIO =/

5

6 |class StageIO extends Bundle :

7 class FetchIO extends StagelIO:

8 val pc = UInt(Width)

9 /* Idem for DecoderIO, AluIO and MemIO =/
10

11 |class MidStage (StagelIO) :
12 val io = I0(new Bundle {

13 /+*I0 of previous/next stagex/
14 val prev = Input(StagelO)
15 val next = Output(StageIO)

16| D

17 val ff = Reg(StageIO)
18 when (cond) {

19 ff = io.prev

20 }

21 io.next = ff

The forwarding of Fuxi is implemented using a Scala
function forwardReqg with IO interfaces as parameters, i.e.
the register file rf and the operand read, as shown in
Listing 5. Fuxi proposes an alternative implementation of the
forwarding condition checks C1-C3, namely the MuxCase
implementation of Sodor is replaced by when-.elsewhen
statements of Chisel, in lines 3-10. Each forwarding path is
then created using calls to forwardReg, in lines 13-14.

Listing 5: Forwarding implementation in the pipeline of Fuxi.

def forwardReg(read: RegReadIO, rf: RegReadIO) {
/+ Cl-C3 condition signals =/
when (C1) {

read.data := io.aluReg.data
} .elsewhen (C2) {

read.data := io.memReg.data
} .elsewhen (C3) {

read.data := io.wbReg.data
} .otherwise {

O 001NN W~



10 read.data := rf.data

11 }

12 |}

13 | forwardReg(io.regReadl, io.rfl)
14 | forwardReg(io.regRead2, io.rf2)

The code snippets in Listing 1 to Listing 5 present proces-
sor design choices addressed using programming language-
specific constructs. Since Chisel is built over Scala, it is often
the case that processor designs mix constructs of the two
languages. For example, the forwarding of Sodor combines a
Chisel MuxCase with a Scala Array, while the forwarding of
Fuxi embeds a Chisel when-.elsewhen in a Scala function.

III. PIPELINE DATAPATH ANALYSIS

In order to construct a pipeline datapath model for the
WCET analysis, we need to determine the pipeline depth
(i.e. number of pipeline stages) as well as the connections
between these stages. A pipeline stage is to be identified by
a set of registers. Intuitively, the construction of a pipeline
datapath proceeds as follows: for each of the pipeline modules,
given as input, and for each register in these modules, we
perform a register analysis to determine precedence relations
between registers. We also perform an output port analysis
to determine how registers from different modules are to be
connected. Finally, we provide an assignment procedure to
map each register to a pipeline stage, according to the results
of the previously mentioned analyses. Next, we introduce some
notations and definitions, following a standard set-theoretic
approach.

Notations. We consider Pr = U?:l M;, a processor design,
defined by a set of n modules and P = U;n:l M;, the pipeline
of Pr, with P C Pr. We assume that P is given and the
(FIRRTL) AST of P is denoted by ASTp, so as AST)yy
represents the AST of each M € P.

Furthermore, for each module M € P we define:

- Insts, the set of instanced modules,

- I/Os, the set of input/output ports,

- Regs, the set of registers (or sequential logic),

- Combs, the set of combinatorial elements (e.g. wires,
multiplexers etc.),

- Ctuxs, the set of contexts (scopes),

- FEuxts, the set of external entities.

Each of these sets, when subscripted by M represents the
corresponding set of a module M and, when subscripted by
‘P, represents the union of all the corresponding sets of the
pipeline modules in P.

An element ins € Insts); identifies the name and the
type of a module instantiated in M. The module of P
which contains directly or indirectly (through transitivity) the
instances of all the other pipeline modules in P is called ‘top‘,
denoted by T.

Example 1: The instance ibuf of the type module IBuf,
defined in the module Rocket, as in Listing 2, line 8 is
denoted by (ibuf, IBuf) € Instsgpocket- The module
RocketTile, in Fig. 1 is the module T of Procker Whereas
Core, in Fig. 2 is the module T of Pryz;.

Furthermore, an element x € I/Os, Regs or Combs is the
identifier of the respective design element, i.e. = is a name of
an input/output port or a register or a wire.

Example 2: The ports prev and next of Listing 3, lines
14-15 are in I/OSuridstage. the multiplexer Mux (cond2,
buf.pc, io.imem.bits.pc) of Listing 1, line 26 is
in Combsrpy, ¢, and registers ex_reg_pc and buf.pc of
Listing 1, lines 6 and 24 are in RegSgrocker and Regsrpuf
respectively.

An element ctx € Ctxsys is defined as a mapping between
the context condition and the respective register updates in
M. A context, which is expressed in Chisel with a when
statement, allows guarded register updates (or any other com-
binational element) in a compact manner. Moreover, when is
often used to provide alternative updates of the same register,
updates which are guarded by different conditions.

Example 3: The context condl +— ex_reg_pc is in
CtxSRocket, as in Listing 1, lines 9-10. Similarly, cond —
££ is in CtrSpridgstage, in Listing 3, lines 18-19. Finally, C1
— read.data, C2 — read.data etc. are in CtrSpyyzi,
in Listing 5, lines 3-11.

We denote by Exts, the set of all design elements (i.e.
ports, registers, wires etc.) which are defined in Pr \ P. For
a module M € P, we define by Extsys, the set of external
design elements which are used in M.

Example 4: Whereas the modules RocketTile, Rocket,
Frontend, IBuf and ShiftQueue form the pipeline P
of Rocket, in Listing 1 other modules like ALU or CSR (not
represented) are in FxtSrocketTile-

We present next the algorithm to construct pipeline data-
path models from Chisel-based processor designs. As such,
we introduce an intermediate representation of the processor
pipeline P, based on the set of pipeline registers Regs, a set
of dependency relations between these registers and a set of
contexts C'txzs. The dependencies between registers are used
to produce chains of registers and the contexts are used to
determine additional relations between these registers, encod-
ing how the processor is coded. Intuitively, this intermediate
representation is a non-strongly connected graph with registers
as nodes and their dependencies as edges.

The sets Regs, Combs, I/Os and C'txs of P are obtained,
for each module M € P, from the ASTp, using the standard
visitor from [12]. We name this operator

process_mod : ASTy; — I/Os x Regs x Ctxs.

The initial partition of the processor design Pr into the
pipeline design P is also sufficient to determine the set Exts.

A depth-first search traversal of the ASTp establishes an
order between the considered pipeline modules, determined
by the instancing relation, i.e. the set Insts. However, for a
module which is instantiated several times, e.g. MidStage of
Fuxi, in Listing 3, our approach computes a module summary
and uses it for all instances of this particular module. We
denote by

order_mods : P x ASTp — P



an operator which establishes an order between the pipeline
modules up to T as the last element.

Example 5: For the five pipeline modules of Rocket,
shown in Fig. 1, order_mods produces the ordered set
ShiftQueue, Frontend, Ibuf, Rocket, RocketTile.

Informally, a module summary has (1) an intra-modular
component which focuses on the module’s registers and (2)
an inter-modular component which focuses on the module’s
interface (i.e. input-output ports).

We address the intra-modular part by computing dependen-
cies between registers through a visitor combinator, character-
izing the connectivity of each register w.r.t. the other design
elements. Operationally, for a given register r in module M, a
visitor combinator iteratively collects the nodes of the AST),
which affect the inputs of r. This iterative process corresponds
to a standard dataflow analysis which terminates at a register
frontier, defined next.

Definition 1: For a register r € Regsys, we denote by
In, the input frontier of r, defined by U?:l c;, where
¢i € Regspy or ¢; € I/Osypy or ¢; € Extsyy.

Such an input frontier contains three kinds of design ele-
ments: registers (i.e. that precede r in the pipeline datapath),
ports or other design elements of the considered pipeline P.

Definition 2: For a register r € Regsys, we denote by C,
the register context of r, defined by the pair (In,, out) with
In, and out being the input frontier and the output connection
of r respectively.

The register context C,. is computed by an operator

regs_ctx : ASTy X Regs x I/Os — In x Regs

where In is the set from Definition 1.

The goal of the inter-modular part of our analysis is to
determine, for each pipeline module an input-output interface
in order to connect the registers of different modules.

Definition 3: For an output port p € I/Osys, we denote
by Out,, the output frontier of p, defined by (J;_, ¢;, where
¢i € Regspy or ¢; € I/Osyy.

An output frontier establishes, for each output port p of a
module M which registers or input ports are connected to it.
The connections between the module’s registers and the output
port are particularly important when connecting registers from
different modules.

Definition 4: For an output port p € I/Os, we denote by
Cio the output context of p, defined by (Out,, p) with Out,,
and p being the output frontier and the output respectively.

The output context C;, is computed by an operator

ios_ctx: ASTy X Regs x [/Os — Out x I/Os

where Out is the set from Definition 3.

For a pipeline module M, for all registers r € Regsas
and output ports p € I/Osyy, the operators regs_ctx and
ios_ctx determine a summary of M. Next, our approach
determines the dependency relations between registers. We
establish first a precedence relation between two registers then
we use these relations to define our working structure.

Definition 5: For two register contexts C,; and C,o of rl
and r2 respectively, a predicate prec(rl, r2) is true if 71 €

In.o, i.e. in the register frontier of 2, and false otherwise.
We denote by Pred the set of (r1,72) with r1,r2 € Regs,
for which prec (rl,r2) evaluates to true.

Definition 6: The intermediate representation of a pipeline
design P, denoted by I Rp is a non-strongly connected graph
G = (V, E) with the set of nodes V = Regs and the set of
edges E = Pred.

This graph is generated by an operator

preced_regs : Cr x Cio — |

where C'r and C'io are the sets in Definition 2 and Definition
4 respectively whereas I is the graph from Definition 6.

Definition 7: The operator ctx_reg : Regs — 2795 ig
defined as ctx_reg(r) = R where for each r; € R, Jctx €
Ctxs with ctx = cond — Upds and r,r; € Upds. ctx_reg
places registers from different connected components of I Rp.

The abstract pipeline datapath of P is constructed by
unfolding I Rp and assigning nodes (i.e. registers) to pipeline
stages. We denote by

to_stage : Regs — N+t

an operator to assign to the registers their stages.

Algorithm 1: Pipeline datapath construction

Input : P =J", Mp and ASTp = J~, AST,,
Output: Regs — Stages - pipeline datapath of P

1 0 < order_mods(P, ASTp) /* order modules
based on instancing, T is last. =/
2 foreach m € o do
3 (I/Osm, Regsm, Ctrsy,) <
process_mod(AST,,)
4 C, + Cp Uregs_ctx(AST,,, Regsm, I1/O0sn)
5 Cio < CipUios_ctx(AST,,, Regsm, I/0sp,)

6 IRp + preced_regs(C,,C;,) /+ build
intermediate representation of P «*/
7 assign_regs(l, PC, IRp, Regs) /+ assign

registers to stages, PC is in stage 1 «/

Algorithm 1 constructs a pipeline datapath out of a given
set of pipeline modules P while working on the correspond-
ing ASTp representation. Once the processing order of the
pipeline modules is determined, in line 1, the algorithm
calculates a module summary, in lines 4-5, for each module of
P. The last iteration, which is over the T module, is followed
by the construction of the intermediate representation of P, in
line 6, used to generate the pipeline datapath, in line 7.

Algorithm 2 presents the assignment of registers to pipeline
stages. This algorithm starts with the program counter PC' as-
signed in the first pipeline stage, i.e., to_stage(PC) = 1. We
distinguish two cases: case 1] driven by register dependencies
and case [2] driven by context dependencies, C'txs. We further
define three possibilities for case [1]: the 1inear case [1]
the min_case and the max_case [1] When the selected
register r cannot be assigned by the above conditions, the
operator select_reg selects another assigned register ' to
stage ¢’ from which we proceed, in line 16.



Algorithm 2: Register to pipeline stage assignment

1 Function assign_regs (i, reg, IRp, Regs):
/* Cl_x and C2 identify r in IRp =/
2 if C1_linear then

3 to_stage(r) =4+1; /% linear case */
4 | assign regs(i+1, r, IRp, Regs)

5 else if CI_min then

6 to_stage(r)=i+1; /% min case [1] %/

7 | assign regs(i+1, r, IRp, Regs)
8 else if C/_max then

9 to_stage(r) =i+2; /% max case x/
10 | assign regs(i+2, r, IRp, Regs)

1 else if C2 then

12 to_stage(r) =i ; /+ case */
13 | assign regs (i, v, IRp, Regs)

14 else

15 (¢, ') < select_reg(IRp, Regs)

16 | assign_regs (i', 1, IRp, Regs)

17 return to_stage;

Linear_case [1] (lines 2-4) is applied when C1_linear =
Al(reg,r) € Pred is true. More specifically, a register r is
assigned to the pipeline stage 7+ 1 if it is the only destination
register of reg, which is already assigned to stage 7.

Min_case (lines 5-7) considers the case when several
source registers are already assigned. The stage assigned to r
strictly follows the minimal stage of its source registers, which
are already assigned to later pipeline stages. Thus, they are
connected to r through backward edges (i.e., the forwarding
mechanism) with no precedence relation between this source
register of minimal stage and the other source registers.

Formally, the min_case is applied to assign
r, preceded by regs, when the condition C1_min
is true, where Cl_min = 3I(reg,r) € Pred A

to_stage(reg) = i — 1 AV(ra,7) € Pred, ry # reg A
to_stage(ry) >= to_stage(reg) A F(reg,rs) € Pred.

The Fig.3 illustrates this case. The source registers i f_pc,
ex_regl and ex_reg?2 of the register dec_req are already
assigned, and there is no relation between the source register
of minimal stage if_pc with the other sources. So, we assign
to dec_reg the minimal stage of its sources plus 1.

A

dec_pc ex_pc mem_pc wh_pc

gl I

ex_regl

ex_reg2

Fig. 3: Simple application of min case 1 (C'1_min).

dec_reg

Max_case [1] (lines 8-10) also addresses the case of several
source registers that are already assigned. It checks if the

source register of minimal stage is directly connected to all
the other sources. In that case, the stage assigned to r follows
the maximal stage of its source registers.

Formally, the max_case assigns r (preceded by reg)
when C1l_maz is true, where Cl_max = 3I(rq,7) €
Pred A to_stage(ry) = i A V(reg,r) € Pred AN ry #
reg A to_stage(ry) >= to_stage(reg) A I(reg,r2) €
Pred.

Fig. 4 illustrates this case, which is found in Rocket.
The two source registers buf.pc and s2_pc of register
ex_reg_pc are already assigned and moreover, s2_pc
precedes buf .pc. So, we assign to register ex_reg_pc the
maximal stage (i.e., that of buf_pc plus 1).

oy

ex_reg_pc

s2_pc

Fig. 4: Simple application of max case 1 (C'1_max).

Rocket is able to handle compressed instructions, thus the
pipeline design has an additional stage to accommodate them,
becoming a 6-stage pipeline instead of a 5-stage one. Listing 6
presents a code snippet to illustrate this situation. If the
useCompressed condition is true, in module Rocket, the
value of nBufvalid, in module IBuf, is greater than 0 and
the register buf .pc is connected to the output io.pc. As
such, an additional pipeline stage is added, with the register
buf.pc preceeding ex_reg_pc. Otherwise, the register
ex_reg_pc has at its input frontier io.imem.bits.pc,
which is further connected to the register s2_pc.

Listing 6: Simplified code for compressed instructions, in
Rocket

1 | class Rocket :

2 val ibuf = Module (new IBuf)

3 useCompressed: Boolean = true

4 val fetchWidth: Int =

5 if (useCompressed) then 2 else 1

6 ex_reg_pc = ibuf.io.pc

7

8 |class IBuf

9 val n = fetchWidth — 1

10 val nBufvalid =

11 if (n ==0) then UInt(0) else Reg(fetchWidth)
12 io.pc =

13 Mux(nBufvalid > 0, buf.pc, io.imem.bits.pc)

Our approach is conservative as it considers both outcomes
of the multiplexer condition, i.e., for compressed and uncom-
pressed instructions. Therefore, it constructs a 6-stage pipeline
datapath model for Rocket, applying the max_case il A
complete construction of this model is presented in Section I'V.

Case (lines 11-13) assigns a register r in the same
pipeline stage as an already assigned register reg from the
same context. Formally, the case is applied when C2
is true, where C2 = ctx reg(r) = R A Jreg € R A
to_stage(reg) =1 — 1.



The correctness of the algorithm is reduced to prove a
subsumption relation relating the original processor design,
say (Qp, and the solution Prpr, of our algorithm. Precisely,
Qp, is the set of prec predicates, derived and evaluated with
respect to a set of processor design executions and Prg,, is
the logical encoding (i.e. also as a set of prec predicates) of
the transitions in the subgraph solution of our algorithm.

IV. IMPLEMENTATION AND EXPERIMENTS

We implemented our approach in Scala, as a pass in
the Chisel/FIRRTL hardware compiler framework and we
evaluated its results on several open-source, Chisel-based
RISC-V processors. Each processor design is considered as
is, without manual modifications or simplifications. Our eval-
uation is on a quad-core Intel Core 1i7 at 1.90GHZ
and 16GB RAM memory. We consider the following six
RISC-V processor designs: RISC-V Mini [18], Sodor [14],
KyogenRV [19], Fuxi [16], and Rocket Chip [15]. We have
briefly presented Sodor 5-stage, Fuxi and Rocket in Section II.
RISC-V Mini [18] proposes a simple 3-stage pipeline designed
to serve as an initial test case for the development of Chisel.
We also consider a 3-stage pipeline of the Sodor processor as
well as KyogenRV [19], a 5-stage pipelined processor targeting
Intel FPGAs and developed for academic purposes. These
processors are developed in different Chisel versions, from
‘3.2 for Fuxi to ‘3.5° for Rocket. We report the results of our
analysis in Table 1.

The first column, LOC presents the code size of each
pipeline P, while the second column, #Mp indicates the
number of pipeline modules, i.e. the cardinal number of P.
Three of the processor designs are single-module and three are
multi-module. The next three columns report statistics related
to the numbers of registers #Regs, of contexts #Cxts as
well as the largest input frontier # F'rt. This parameter is a
measure of the maximal connectivity between a register and
other design elements, either sequential or combinational. The
next five columns detail the number of registers successfully
assigned to pipeline stages. As such, columns linear_case,
min_case and max_case report the number of placed registers
by the respective case. Then the column Case I reports the
aggregated results of these three cases and the column Case
2 presents the number of registers placed by this particular
case. Finally, the last two columns report the run time of our
algorithm: the first corresponds to the intra-module phase (e.g.,
lines 2-5 of Algorithm 1), while the second corresponds to the
register assignment phase (e.g., Algorithm 2). The runtime of
the assignment phase is significantly lower than the one of the
intra-modular phase. The latter increases with the number of
modules, and is thus the highest for the Fuxi processor.

The depth of each pipeline has been correctly computed,
namely our approach constructs a pipeline datapath of the
same depth as in respective processor specification. Moreover,
using the naming conventions w.r.t. register names and the
pipeline stages (e.g., prefixes dec_ and ex_/exe_ for de-
code and execute stage respectively, as shown in Listing 1 or
Listing 4), we could also verify that the registers are placed
in their expected pipeline stage.

We also encountered several issues. For example, our ap-
proach initially identified the KyogenRV design as a 7-stage
pipeline instead of a 5-stage one. This over-approximation
was due to the use of Chisel RegNext construct. More
specifically, the semantics of RegNext produces a one-cycle
delayed version of the associated signal. At the FIRRTL level,
it is translated into an additional register for each delay and
thus an additional pipeline stage as there are two uses of
RegNext in KyogenRV. However, these registers can be
identified based on their compiled FIRRTL names (i.e. a
particular prefix is added), allowing us to discard them when
building the /Rp and then the assignment of registers.

Our approach assigns all the registers of the pipeline mod-
ules only for two designs, Sodor 5-stage and RISC-V Mini.
For KyogenRYV, the unassigned registers are in fact not related
to the datapath but to the control path; we also collected
a vector register named rv32i_reg[0-31], implementing
the register file. For Rocket and Sodor 3-stage, the control
registers are generally defined as a compound type such as
Bundle or Vector type. Thus, each field is considered an
individual register and represented as such when the register
assignment is performed. However, most of these registers are
from the control path, updated in the external modules Ezts,
for instance the modules CSR or BTB of Rocket.

Next, we summarize in Fig. 5 the execution steps of the
register assignment, i.e., Algorithm 2, for all the processor
designs. The coding color of the algorithm traces is also dis-
played in Table I: green represents the linear_case 1], gray and
pink are min_case |L] and max_case |1l respectively, and orange
represents case (2] Furthermore, the multi-modular aspect is
also reported by specifying the transition between pipeline
modules when assigning registers, using the symbol “I*. We
notice that the register assignment applies the linear_case |1]in
the beginning as it is driven by the register dependencies. We
also notice that the transition between modules expose the way
the implementation of the multi-modular aspect is done in our
analysis. For Fuxi, the flat module design results in frequent
module changes, moving between pipeline stage modules and
the MidStage module, as shown in Fig. 2. It is however
not the case of Rocket and Sodor 3-stage. This is due to the
hierarchical module design, shown for Rocket in Fig. 1, where
the registers are restricted in three modules IBuf, Frontend
and Rocket. More precisely, the registers of the stages PC-
generator and IF, are implemented in Frontend while the
registers of stages from ID to WB are in Rocket.

The pipeline datapath construction of Rocket. Table 11
details the execution of the register assignment algorithm (i.e.,
Algorithm 2) on the Rocket processor. Since it is made of 240
registers, we only present a subset of the pipeline datapath
registers. We start with s1_pc, the PC register, assumed to
be assigned in the first pipeline stage. Then, our algorithm
proceeds to place registers s2_pc, buf.pc and buf.data
into their respective stages using the linear_case || as these
registers are part of the same connected component of [ Rp.
The most interesting case is that of register ex_reg_pc.
Our algorithm proceeds to assign this register through the



TABLE I: Experimental results on RISC-V processor designs.

linear | min max runtime(s runtime(s
LOC | #Mp | #Regs | #Cxts | #Frt case case | case Case 1 |EHEERE —intra—( ) —assignmgn)t—
RISC-V Mini 241 1 11 3 8 3 - - 4 7 0.12 0.049
Sodor 5-stage 646 1 37 1 88 24 2 - 27 10 0.68 0.17
KyogenRV 4568 1 108 59 53 41 2 - 44 30 16.38 0.047
Sodor 3-stage 575 3 26 8 17 6 - - 7 1 0.52 0.062
Fuxi 2438 10 54 9 33 29 4 - 34 19 1752.51 0.054
Rocket 4159 5 240 68 224 13 - 1 15 15 49.63 0.087
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Fig. 5: Execution of the register assignment algorithm, i.e., Algorithm 2.

max case since its source registers s2_pc and buf .pc
are already assigned to stages 2 and 3 respectively, and the
source min s2_pc precedes the other source buf . pc.s Then,
the linear case is applied in order to assign the regis-
ters mem_reg_pc and wb_reg_pc to their corresponding
stages. The next registers to be assigned are ex_reg_cause
and ex_reg_inst. Their respective input frontier contains a
reference to an external design element, the module Inst. So,
these registers are assigned using case (2] as they are updated
in the same context as ex_reg_pc. Then, our algorithm
applies the linear_case 1] to assign pipeline stages to regis-
ters mem_reg_cause and mem_reg_inst, and further to
registers wb_reg_cause and wb_reg_inst. Furthermore,
case [2] is applied to register mem_reg_wbdata, which is
connected to an external design element, the module ALU
and which is updated in same context as mem_reg_pc. A
similar case is the register wb_reg_wbdata, updated in the
same context as wo_reg_pc. Thus, case[2]is applied. Finally,
our algorithm assigns the remaining registers ex_reg_rsO,
ex_reg_rsl to pipeline stages. More precisely, their respec-
tive input frontier contains a reference to an external design
element, the module RF. So these registers are assigned using
the case as they are updated in the same context as the
registers already assigned to the execute stage. Fig. 6 shows the
resulting pipeline datapath of Rocket, omitting those registers
which are not on the path from the initial PC register.

V. RELATED WORK

The works in [20], [21] address a similar goal as ours,
that of analyzing processor design code [20] and determining
microarchitecture models for the WCET analysis [21]. These
approaches analyze proprietary Verilog and VHDL code,
whereas we consider open-source processor designs developed
with more expressive HDL languages like Chisel/FIRRTL.
In contrast to our approach, which engineers a solution and
then aims to validate it a posteriori, the work in [20] uses
the abstract interpretation framework to construct a sound

TABLE II: Experimental results on Rocket chip processor.

Register to assign Module Source register #St
sl_pc Frontend| - 1
s2_pc Frontend| sl_pc 2
buf.pc IBuf s2_pc 3
buf.data IBuf s2_pc 3
ex_reg_pc Rocket buf.pc — 2, 4
s2_pc — 1
mem_reg_pc Rocket ex_reg_pc 5
wb_reg_pc Rocket mem_reg_pc 6
ex_reg_cause Rocket - 4
mem_reg_cause Rocket ex_reg_cause 5
ex_reg_inst Rocket - 4
mem_reg_inst Rocket ex_reg_inst 5
wb_reg_inst Rocket mem_reg_inst 6
ex_reg_raw_inst Rocket - 4
mem_reg_raw_inst Rocket ex_reg_raw_inst | §
wb_reg_raw_inst Rocket mem_reg_raw_inst| 6
ex_reg_wphit[0] Rocket - 4
mem_reg_mem_size Rocket - 5
wb_reg_mem_size Rocket mem_reg_mem_sizel 6
ex_reg_mem_size Rocket mem_reg_mem_size|l 4
mem_reg_wdata Rocket - 5
wb_reg_cause Rocket - 6
wb_reg_wdata Rocket - 6
wb_reg_wphit [0] Rocket - 6
mem_reg_wphit [0] Rocket wb_reg_wphit [0] 5
ex_reg_rs_bypass[0]| Rocket - 4
ex_reg_rs_bypass[1l]| Rocket - 4
ex_reg_rs_1sb[0] Rocket - 4
ex_reg_rs_1lsb[l] Rocket - 4
ex_reg_rs_msb[0] Rocket - 4
ex_reg_rs_msb[l] Rocket - 4

approximation of the processor behavior. The results of [20]
is applied in [21] to determine microarchitecture models using
a semi-automatic procedure based on program slicing, while
our analysis is fully automated towards constructing a pipeline
datapath model. Both our approach and that of [21] rely on
simplifications of the original design: ours is fed a given set of
pipeline design modules while the work in [21] uses a combi-
nation of program slicing with hard-coded initialization. More
precisely, program slicing is used to eliminate parameterized
features of the design (i.e. for conditional compilation) and
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Fig. 6: Rocket core pipeline datapath model.

certain signals (e.g. for interrupts) are manually initialized.
Regarding the control path, our approach does not differentiate
between control and datapath registers as long as they are
in the considered modules. The approach in [21] performs
value analysis to approximate register and memory contents,
aiming to simplify the original VHDL design (i.e. adding
pseudo VHDL processes) to a datapath representation with
accurate timing. The approach depends on the correct iden-
tification of the control path information, which is not fully
automated. Abstract pipeline models (including forwarding)
are addressed in [22], from processor graphs (i.e. structures
combining combinational and sequential logics and which
could be generated from Verilog/VHDL code). The actual
datapath construction also relies on assigning registers to
pipeline stages, but requires, as input, the pipeline depth.
Besides, the work in [22] aims further, to formally verify the
functional correctness of the pipeline optimizations.

A related problem is that of automated pipeline designs,
addressed in [23], [24]. More specifically, their goal is to
synthesize pipelines from sequential representations, starting
from simple designs [23] to more complex variants [24].
In comparison, our approach has an opposite goal, that of
going from full-fledged processor implementations to simpler
pipeline datapath models, as used in the WCET analysis. Also,
the automated pipeline design considers the pipeline depth
whereas, our analysis aims to bound this value. Moreover, our
analysis works on richer HDL languages used in processor
designs. Finally, in [23], [24], the correctness of automated
pipeline design is ensured during its construction, while we
rely on techniques specific to software engineering to deter-
mine a solution.

Traditional HDLs like Verilog or VHDL are currently
backends in complex hardware compiler frameworks like that
of Chisel/FIRRTL or those in [25]-[27]. As such, developing
automated techniques towards analyzing HDL designs (e.g.
for the construction of datapath pipelines, as in the current
work) becomes tantamount to work with both high-level HDL
languages and language transformation (i.e. compilation) is-

sues. For example, the work in [27] proposes an intermediate-
language representation named LLLHD, which is inspired from
LLVM IR, thus, in the SSA form. LLHD plays a similar
role as FIRRTL in a hardware compilation chain, to facilitate
the integration of compilation passes. Our approach works
on the AST of FIRRTL, where multiple updates of the same
register are possible, whereas LLHD proposes a more analysis-
friendly representation (i.e. SSA) with a single register update.
Higher-level HDLs [25], [26] similar to Chisel also propose
design modularity and abstraction, leveraging the functional
programming paradigm. One of their common characteristics
is to explicitly express guarded (register) updates, identifiable
on the AST of the processor design and used in our analysis
to determine contexts for the register updates. Our approach,
which targets the Chisel/FIRRTL compilation framework,
would also be extensible to other similar frameworks, as shown
by respective language inclusions, in [25], for Chisel and
in [27] for FIRRTL.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we proposed an approach to automatically gen-
erate pipeline datapath models for the WCET analysis, out of
RISC-V processor designs. Our approach addressed processors
developed with the Chisel/FIRRTL compilation framework
and we applied it on several open-source processors of various
degree of complexity. Our approach handled multi-modular
pipelines, with forwarding mechanisms and designed with a
wide range of Chisel features. Finally, we have evaluated our
approach on several in-order RISC-V processors, with a single
datapath pipeline module and multi-modular pipeline designs.

As for future work, we pursue two directions. First, we want
to validate the constructed datapath models against processor
simulators so as to replace the current manual validation of
these models with an automated procedure. Second, we want
to generate formal datapath models in order to integrate them
in formal verification frameworks towards hardware/software
co-verification of functional [28] or non-functional (e.g. tim-
ing) [29] requirements.
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